20.設(shè)復(fù)數(shù)ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,則z=1+ω+ω2+…+ω2012的值為0.

分析 由ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,ω3=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)(-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)=1,ω2013=1由等比數(shù)列的前n項(xiàng)和公式可得z=1+ω+ω2+…+ω2012=$\frac{1-{ω}^{2013}}{1-ω}$計(jì)算可得答案

解答 解:∵ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,
∴ω2=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i,
∴ω3=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)(-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i)=1,
∴ω2013=(ω3671=1,
∴z=1+ω+ω2+…+ω2012=$\frac{1-{ω}^{2013}}{1-ω}$=0,
故答案為:O.

點(diǎn)評(píng) 本題為復(fù)數(shù)的運(yùn)算和等比數(shù)列的前n項(xiàng)和公式的應(yīng)用,化簡(jiǎn)復(fù)數(shù)的代數(shù)形式和等比數(shù)列的前n項(xiàng)和的應(yīng)用是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=2n-1,數(shù)列{bn}滿足2$\sum_{i=1}^{n}i•_{i}$-2n=Sn,若bn≥λ對(duì)任意的n∈N*恒成立,則實(shí)數(shù)λ的取值范圍為(-∞,1]..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|=2$\sqrt{3}$,若平面向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-$\overrightarrow{a}$|=|$\overrightarrow{c}-\overrightarrow$|.則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角(銳角)為$\frac{π}{6}$;若非零平面向量$\overrightarrow{c}$-$\overrightarrow{a}$與$\overrightarrow{c}$-$\overrightarrow$的夾角為$\frac{2π}{3}$,則|$\overrightarrow{c}$|的取值范圍是($2\sqrt{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an},其通項(xiàng)公式an=nsin2$\frac{n}{2}$π-ncos2$\frac{n}{2}$π,其前n項(xiàng)和為Sn,求S2014+S2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.角α的終邊過(guò)點(diǎn)M(-4t,3t)(t≠0),則sinα的值是( 。
A.$\frac{3}{5}$B.-$\frac{3}{4}$C.$±\frac{3}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.我縣某種蔬菜從二月一日起開(kāi)始上市,通過(guò)市場(chǎng)調(diào)查,得到西紅柿種植成本Q(單位:元/102kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:
時(shí)間t50110250
種植成本Q150108150
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系.Q=at+b,Q=at2+bt+c,Q=a•bt,Q=a•logbt.
(2)利用你選取的函數(shù),求西紅柿種植成本最低時(shí)的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.直線$\sqrt{3}$x+y=0的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{5}{6}π$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若z(1+i)=2+i(i是虛數(shù)單位),則z=(  )
A.$\frac{3}{2}+\frac{i}{2}$B.$\frac{3}{2}-\frac{i}{2}$C.$-\frac{3}{2}-\frac{i}{2}$D.$-\frac{3}{2}+\frac{i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$sinα=\frac{3}{5}$,則$sin(\frac{π}{2}+2α)$=( 。
A.$-\frac{12}{25}$B.$\frac{7}{25}$C.$\frac{12}{25}$D.$-\frac{7}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案