2.已知曲線C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)設M(1,2),直線l與曲線C交點為A、B,試求|MA|•|MB|的值.

分析 (1)C參數(shù)方程$\left\{\begin{array}{l}x=2cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)).消去參數(shù)t,可得直線l的普通方程;
(2)設M(1,2),直線l與曲線C聯(lián)立,利用參數(shù)的幾何意義求|MA|•|MB|的值.

解答 解:(1)C參數(shù)方程$\left\{\begin{array}{l}x=2cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)).$l:\left\{\begin{array}{l}x=1+\frac{1}{2}t⇒t=2(x-1)\\ y=2+\frac{{\sqrt{3}}}{2}t⇒y-2=\sqrt{3}(x-1)\end{array}\right.$,
∴直線l的方程為$\sqrt{3}x-y+2-\sqrt{3}=0$.
(2)直線方程代入橢圓方程可得$3{(1+\frac{1}{2}t)^2}+4{(2+\frac{{\sqrt{3}}}{2}t)^2}=12$,
化簡可得$\frac{15}{4}{t^2}+(3+8\sqrt{3})t+7=0$,
∴${t_1}+{t_2}=-\frac{{4(3+8\sqrt{3})}}{15}$,${t_1}{t_2}=\frac{28}{15}$,$|MA|•|MB|=|{t_1}{t_2}|=\frac{28}{15}$.

點評 本題考查參數(shù)方程,考查參數(shù)的幾何意義,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.執(zhí)行如圖所示的程序框圖.
(1)若輸入的x=2,n=5,求輸出的s的值;
(2)若輸入的x=4,輸出的s=46,求輸入的n(n∈N*)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知集合A={x|-4<x<1},B={x|($\frac{1}{2}$)x≥2}.
(1)求A∩B,A∪B;
(2)設函數(shù)f(x)=$\sqrt{lo{g}_{4}(2x-3)}$的定義域為C,求(∁RA)∩C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=log${\;}_{\frac{1}{2}}$(3x-2)的定義域是{x|x>$\frac{2}{3}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)y=xa,y=logbx的圖象如圖所示,則( 。
A.b>1>aB.b>a>1C.a>1>bD.a>b>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知直線x-y+a=0與圓心為C的圓x2+y2+2x-4y-4=0相交于A,B兩點,且AC⊥BC,則實數(shù)a的值為( 。
A.0或3B.0或4C.0或5D.0或6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若f(x)=x${\;}^{\frac{1}{4}}$,則不等式f(x)>f(8x-16)的解集是( 。
A.$[2,\frac{16}{7})$B.(0,2]C.[2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知${({x+\frac{1}{ax}})^6}$展開式的常數(shù)項是540,則由曲線y=x2和y=xa圍成的封閉圖形的面積為( 。
A.$\frac{5}{12}$B.$\frac{5}{3}$C.1D.$\frac{13}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設f:A→B是A到B的一個映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(2x,x-y),則B中元素(2,-1)的原象是( 。
A.(1,2)B.(1,-2)C.(4,3)D.(4,-3)

查看答案和解析>>

同步練習冊答案