小強(qiáng)參加一次測(cè)試,共有三道必答題,他是否答對(duì)每題互不影響.已知他只答對(duì)第一題的概率為0.08,只答對(duì)第一題和第二題的概率為0.1,至少答對(duì)一題的概率為0.88,用X表示小強(qiáng)答對(duì)題的數(shù)目.
(Ⅰ)求小強(qiáng)答對(duì)第一題的概率;
(Ⅱ)求X的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:(I) 設(shè)事件A表示“答對(duì)第一題”,事件B表示“答對(duì)第二題”,事件C表示“答對(duì)第三題”,由已知得
P(A)[1-P(B)][1-P(C)]=0.08
P(A)P(B)[1-P(C)]=0.1
[1-P(A)][1-P(B)][1-P(C)]=1-0.88
,由此能求出小強(qiáng)答對(duì)第一題的概率.
(Ⅱ)由已知得,X=0,1,3,分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.
解答: 解:(I) 設(shè)事件A表示“答對(duì)第一題”,事件B表示“答對(duì)第二題”,事件C表示“答對(duì)第三題”,
由已知得
P(A)[1-P(B)][1-P(C)]=0.08
P(A)P(B)[1-P(C)]=0.1
[1-P(A)][1-P(B)][1-P(C)]=1-0.88

解得P(A)=
2
5
,P(B)=
11
20
,P(C)=
5
9
,
∴小強(qiáng)答對(duì)第一題的概率為
2
5

(Ⅱ)由已知得,X=0,1,3,
P(X=0)=[1-P(A)][1-P(B)][1-P(C)]=1-0.88=
3
25
,
P(X=1)=P(A)[1-P(B)][1-P(C)]+P(B)[1-P(A)][1-P(C)]+P(C)[1-P(A)][1-P(B)]=
19
50
,
P(X=2)=P(A)P(B)[1-P(C)]+P(A)[1-P(B)]P(C)+[1-P(A)]P(B)P(C)=
19
50
,
P(X=3)=P(A)P(B)P(C)=
3
25

X0123
P
3
25
19
50
19
50
3
25
EX=
3
25
19
50
+2×
19
50
+3×
3
25
=
3
2
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x+2y+2-a=0被圓C:x2+y2-2x+2y=0截得的弦長(zhǎng)為
6
5
5
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①“x>1”是“|x|>1”的充分不必要條件
②若命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”
③如果實(shí)數(shù)x,y滿足
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,則z=|x+2y-4|的最大值為21
④在△ABC中,若
AB
BC
3
=
BC
CA
2
=
CA
AB
1
,則tanA:tanB:tanC=3:2:1
其中真命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(1,2)的直線l與圓C:(x-2)2+y2=9交于A、B兩點(diǎn),C為圓心,當(dāng)點(diǎn)C到直線l的距離最大時(shí),直線l的方程為(  )
A、x=1
B、y=1
C、x-y+1=0
D、x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題的否定為假命題的是( 。
A、?x∈R,x2-2x+2≤0
B、任意一個(gè)平面四邊形的四個(gè)頂點(diǎn)共圓
C、樣本的中位數(shù)一定在樣本中
D、線性回歸直線一定經(jīng)過樣本中心點(diǎn)(
.
x
,
.
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列四個(gè)命題:
①命題“?x∈R,x2-x>0”的否定是“對(duì)?x∈R,x2-x<0”;
②若p:0<x<2是q:a-1<x≤a的必要不充分條件,則a的取值范圍是[1,2];
③冪函數(shù)f(x)=(m2-m-1)xm2+m-3在x=0處有定義,則實(shí)數(shù)m的值為2;
④已知向量
a
=(3,-4)
,
b
=(2,1)
,則向量
a
在向量
b
方向上的投影是
2
5

其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
x-2
x+2
;
(1)判斷函數(shù)奇偶性,并說明理由;
(2)求函數(shù)f(x)的反函數(shù)f-1(x);
(3)若函數(shù)的定義域?yàn)閇α,β],值域?yàn)閇logaa(β-1),logaa(α-1)],并且f(x)在[α,β]上為減函數(shù).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、存在x0∈R,使得x02-1<0的否定是:任意x∈R,均有x02-1>0
B、存在x0∈R,使得ex0≤0的否定是:不存在x0∈R,使得ex0>0
C、若p或q為假命題,則命題p與q必一真一假
D、若x=3,則x2-2x-3=0的否命題是:若x≠3,則x2-2x-3≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B為兩個(gè)不相等的集合,條件p:x∉(A∩B),條件q:x∉(A∪B),則p是q的( 。
A、充分不必要條件
B、充要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案