2.某班生活委員為了解在春天本班同學(xué)感冒與性別是否相關(guān),他收集了3月份本班同學(xué)的感冒數(shù)據(jù),并制出下面一個(gè)2×2列聯(lián)表:
感冒不感冒合計(jì)
男生52732
女生91928
合計(jì)134760
參考數(shù)據(jù)
P(K2≥2.072)≈0.15
P(K2≥2.706)≈0.10
P(K2≥6.635)≈0.010
由K2的觀測(cè)值公式,可求得k=2.278,根據(jù)給出表格信息和參考數(shù)據(jù),下面判斷正確的是( 。
A.在犯錯(cuò)概率不超過(guò)10%的前提下認(rèn)為該班“感冒與性別有關(guān)”
B.在犯錯(cuò)概率不超過(guò)10%的前提下不能認(rèn)為該班“感冒與性別有關(guān)”
C.有15%的把握認(rèn)為該班“感冒與性別有關(guān)”
D.在犯錯(cuò)概率不超過(guò)10%的前提下認(rèn)為該班“感冒與性別有關(guān)”

分析 根據(jù)數(shù)據(jù)計(jì)算得隨機(jī)變量K2的觀測(cè)值,對(duì)照2×2列聯(lián)表中數(shù)據(jù),即可得出統(tǒng)計(jì)結(jié)論.

解答 解:由2×2列聯(lián)表數(shù)據(jù)計(jì)算得隨機(jī)變量K2的觀測(cè)值是k=2.278>2.706,
通過(guò)對(duì)照表中數(shù)據(jù)得,P(K2≥2.706)≈0.10
∴在犯錯(cuò)誤的概率不超過(guò)1%的前提下不能認(rèn)為該班“感冒與性別有關(guān)”.
故選:B.

點(diǎn)評(píng) 本題考查了應(yīng)用2×2列聯(lián)表中的數(shù)據(jù),得出統(tǒng)計(jì)結(jié)論的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某市舉辦校園足球賽,組委會(huì)為了做好服務(wù)工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡看足球比賽不喜歡看足球比賽總計(jì)
總計(jì)
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與喜歡看足球比賽有關(guān)?
(3)從女志愿者中抽取2人參加某場(chǎng)足球比賽服務(wù)工作,若其中喜歡看足球比賽的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
附:參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.2016年2月份海城市工商局對(duì)35種商品進(jìn)行抽樣檢查,鑒定結(jié)果有15種假貨,現(xiàn)從35種商品中選取3種.
(1)恰有2種假貨在內(nèi)的不同取法有多少種?
(2)至少有2種假貨在內(nèi)的不同取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,則數(shù)列{an}的公差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.直線y=x-3的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)z=i(1-2i)(i為虛數(shù)單位),則$\overline{z}$=(  )
A.1-2iB.1+2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F(xiàn),H分別是PA,PD,AB的中點(diǎn).
(1)求直線AH與平面EFH所成角的大小;
(2)求二面角H-EF-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某中學(xué)共有4400名學(xué)生,其中男生共有2400名,女生2000名,為了解學(xué)生的數(shù)學(xué)基礎(chǔ)的差異,采用分層抽樣的辦法從全體學(xué)生中選取55名同學(xué)進(jìn)行試卷成績(jī)調(diào)查,得到男生試卷成績(jī)的頻率分布直方圖和女生試卷成績(jī)的頻數(shù)分布表.
女生試卷成績(jī)的頻數(shù)分布表
 成績(jī)分組[75,90)[90,105)[105,120)[120,135)[135,150)
 頻數(shù) 2 6 8 7 b
(1)計(jì)算a,b的值,以分組的中點(diǎn)數(shù)據(jù)為平均數(shù),分別估計(jì)該校男生和女生的數(shù)學(xué)成績(jī);
(2)若規(guī)定成績(jī)?cè)赱120,150]內(nèi)為數(shù)學(xué)基礎(chǔ)優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為男女生的數(shù)學(xué)基礎(chǔ)有差異.
  男生 女生 總計(jì)
 優(yōu)秀   
 不優(yōu)秀   
 總計(jì)   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.100.050.01
K02.7063.8416,635

查看答案和解析>>

同步練習(xí)冊(cè)答案