A. | f(x)=2sin(x+$\frac{π}{6}$) | B. | f(x)=2sin(2x+$\frac{2π}{3}$) | C. | f(x)=2sin(x+$\frac{π}{3}$) | D. | f(x)=2sin(2x+$\frac{5π}{6}$) |
分析 由周期求出ω,根據(jù)y=Asin(ωx+φ)的圖象變換規(guī)律、正弦函數(shù)的對(duì)稱性,求出φ的值,可得函數(shù)的解析式.
解答 解:由題意知:$\frac{2π}{ω}$=π,得ω=2,向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度后得f(x)=2sin(2x+$\frac{π}{3}$+φ),
因?yàn),所得圖象關(guān)于x=$\frac{π}{4}$軸對(duì)稱,
所以,$\frac{π}{2}$+$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,
所以,φ=kπ-$\frac{π}{3}$,k∈Z,
因?yàn)椋?<φ<π,
所以,φ=$\frac{2π}{3}$.
可得f(x)的解析式為f(x)=2sin(2x+$\frac{2π}{3}$).
故選:B.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,y=Asin(ωx+φ)的圖象變換規(guī)律,由周期求出ω,根據(jù)正弦函數(shù)的對(duì)稱性求出φ的值是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{14}{5}$,7] | B. | [4,7] | C. | [$\frac{14}{5}$,4] | D. | [7,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com