7.通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動,得到如表的列聯(lián)表:
總計(jì)
愛好402060
不愛好203050
總計(jì)6050110
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$,其中n=a+b+c+d
參照附表,得到的正確結(jié)論是( 。
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”

分析 根據(jù)條件中所給的觀測值,同題目中節(jié)選的觀測值表進(jìn)行檢驗(yàn),得到觀測值對應(yīng)的結(jié)果,得到結(jié)論有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”.

解答 解:由題意知本題所給的觀測值,X2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$≈7.8
∵7.8>6.635,
∴這個(gè)結(jié)論有0.010的機(jī)會說錯,
即有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān).
故選:C.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查對于觀測值表的認(rèn)識,這種題目一般運(yùn)算量比較大,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.從集合{1,2,3,4}中隨機(jī)取出兩個(gè)不同的元素,它們的和為奇數(shù)的概率是( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知各項(xiàng)均不為0的數(shù)列{an}滿足a1=a,a2=b,且an2=an-1an+1+λ(n≥2,n∈N),其中λ∈R.
(1)若λ=0,求證:數(shù)列{an}是等比數(shù)列;
(2)求證:數(shù)列{an}是等差數(shù)列的充要條件是λ=(b-a)2;
(3)若數(shù)列{bn}為各項(xiàng)均為正數(shù)的等比數(shù)列,且對任意的n∈N*,滿足bn-an=1,求證:數(shù)列{(-1)nanbn}的前2n項(xiàng)和為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直角△ABC的一邊長a=2,另兩邊長b,c是關(guān)于x的方程x2-4x+m=0的兩個(gè)根,求m的值和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某展覽館用同種規(guī)格的木條制作如圖所示的展示框,其內(nèi)框與外框均為矩形,并用木條相互連結(jié),連結(jié)木條與所連框邊均垂直.水平方向的連結(jié)木條長均為8cm,豎直方向的連結(jié)木條長均為4cm,內(nèi)框矩形的面積為3200cm2.(不計(jì)木料的粗細(xì)與接頭處損耗)
(1)如何設(shè)計(jì)外框的長與寬,才能使外框矩形面積最小?
(2)如何設(shè)計(jì)外框的長與寬,才能使制作整個(gè)展示框所用木條最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2lnx-$\frac{1}{2}$mx2-(1-2m)x,m∈R.
(Ⅰ)若函數(shù)f(x)的圖象在x=1處的切線過點(diǎn)(2,-1),求實(shí)數(shù)m的值;
(Ⅱ)當(dāng)m>-$\frac{1}{2}$時(shí),討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)F1和F2是雙曲線$\frac{{x}^{2}}{4}$-y2=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線右支上,且滿足∠F1PF2=90°,求△F1PF2的面積為S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.1-iB.1+iC.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各組向量中能作為表示它們所在平面內(nèi)的所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow$=(1,-2)B.$\overrightarrow{a}$=(3,2),$\overrightarrow$=(6,4)C.$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(5,7)D.$\overrightarrow{a}$=(-3,-1),$\overrightarrow$=(3,1)

查看答案和解析>>

同步練習(xí)冊答案