【題目】如圖,三棱錐中,底面△是邊長(zhǎng)為2的正三角形,底面,點(diǎn)分別為的中點(diǎn).

1)求證:平面平面;

2)在線段上是否存在點(diǎn),使得三棱錐體積為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

【答案】1)證明見解析.(2)存在,中點(diǎn).

【解析】

1)由底面推出,結(jié)合可推出平面,線面垂直推出面面垂直;(2)過G,由面面垂直的性質(zhì)證明平面ABC,再利用等體積法由即可求得,根據(jù)線面垂直的性質(zhì)及中位線的性質(zhì)即可求得點(diǎn)G的位置.

1)因?yàn)?/span>底面,底面,所以,

因?yàn)椤?/span>是等邊三角形且EAC的中點(diǎn),所以,

,平面PAC平面PAC

所以平面,

因?yàn)?/span>平面,所以平面平面;

2)過G,

平面ABC平面PAB,平面PAB平面ABC

平面PAB平面ABC=AB,平面ABC,

,

,

平面ABC平面ABC,,

PB中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1F2是橢圓Cab0)的左、右焦點(diǎn),過橢圓的上頂點(diǎn)的直線x+y=1被橢圓截得的弦的中點(diǎn)坐標(biāo)為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過F1的直線l交橢圓于A,B兩點(diǎn),當(dāng)△ABF2面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直四棱柱中,底面是邊長(zhǎng)為6的正方形,點(diǎn)在線段上,且滿足,過點(diǎn)作直四棱柱外接球的截面,所得的截面面積的最大值與最小值之差為,則直四棱柱外接球的半徑為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線)上的兩個(gè)動(dòng)點(diǎn),焦點(diǎn)為F.線段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線的焦點(diǎn)F的距離之和為8.


1)求拋物線的標(biāo)準(zhǔn)方程;

2)若線段AB的垂直平分線與x軸交于點(diǎn)C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)若a=1,且f(x)≥m(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;

2)當(dāng)時(shí),若x=0不是f(x)的極值點(diǎn),求實(shí)數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等邊三角形,,PQ依次為AC,AB上的點(diǎn),且線段PQ分為面積相等的兩部分,設(shè),

1)用解析式將t表示成x的函數(shù);

2)用解析式將y表示成x的函數(shù);

3)求y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副撲克牌有52張(不包括大小王),求:

1)任取1張是紅桃的概率;

2)任取2張是同花色的概率;

3)任取3張,至少有2張是同花色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司招聘員工,指定三門考試課程,有兩種考試方案.方案一:考試三門課程,至少有兩門及格為考試通過;方案二:在三門課程中,隨機(jī)選取兩門,這兩門都及格為考試通過.假設(shè)某應(yīng)聘者對(duì)三門指定課程考試及格的概率分別是,,且三門課程考試是否及格相互之間沒有影響.

1)分別求該應(yīng)聘者用方案一和方案二時(shí)考試通過的概率;

2)試比較該應(yīng)聘者在上述兩種方案下考試通過的概率的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劃船運(yùn)動(dòng)員8人,其中3人只會(huì)劃右舷,2人只會(huì)劃左舷,3人左右舷都會(huì)劃,現(xiàn)在要從這8人中選6個(gè)人,3個(gè)劃右舷,3個(gè)劃左舷,共有多少種選法?

查看答案和解析>>

同步練習(xí)冊(cè)答案