13.函數(shù)f(x)=$\frac{lg(x+1)}{\sqrt{x-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-1,+∞)B.(-1,1)C.[1,+∞)D.(1,+∞)

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)以及二次根式的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x+1>0}\\{x-1>0}\end{array}\right.$,解得:x>1,
故選:D.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)的性質(zhì)以及二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為( 。
A.6+π(m3B.4+π(m3C.3+π(m3D.2+π(m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點(diǎn)P在曲線ρcosθ+2ρsinθ=3上,其中0≤θ≤$\frac{π}{4}$,ρ>0,則點(diǎn)P軌跡是( 。
A.直線x+2y-3=0B.以(3,0)為端點(diǎn)的射線
C.圓(x-2)2+y2=1D.以(1,1),(3,0)為端點(diǎn)的線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合A={x|x2-2x<0},函數(shù)f(x)=$\sqrt{x-1}$的定義域?yàn)榧螧,則A∩B等于( 。
A.(0,1)B.[0,1)C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某公司的班車在8:00,8:30發(fā)車,小明在7:50至8:30之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時(shí)刻是隨機(jī)的,則他等車時(shí)間不超過10分鐘的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某設(shè)備啟用后,使用年份x(年)和所需的維修費(fèi)用y(萬元)有如下幾組統(tǒng)計(jì)數(shù)據(jù):
x23456
y2.23.85.56.57.0
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)估計(jì)該設(shè)備啟用后第10年(即x=10)所需要的維修費(fèi)用大約是多少?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在下列均為正數(shù)的表格中,每行中的各數(shù)從左到右成等差數(shù)列,每列中的各數(shù)從上到下成等比數(shù)列,那么x+y+z=16.
1x3
ya6
48z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-x的取值范圍是( 。
A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若132(k)=30(10),則k=4.

查看答案和解析>>

同步練習(xí)冊答案