已知公比大于1的等比數(shù)列{an}中,a2=2且6是a1+3與a3+4的等差中項(xiàng),
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1+2b2+3b3+…+nbn=an,求數(shù)列{bn}的通項(xiàng)公式.
考點(diǎn):數(shù)列的求和,等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出;
(II)利用遞推關(guān)系即可得出.
解答: 解:(I)公比q大于1的等比數(shù)列{an}中,a2=2且6是a1+3與a3+4的等差中項(xiàng),
∴a1q=2,12=a1+3+a1q2+4,q>1.
解得
a1=1
q=2
,
an=2n-1
(II)∵b1+2b2+3b3+…+nbn=an,
∴當(dāng)n≥2時(shí),b1+2b2+3b3+…+(n-1)bn-1=an-1,
∴nbn=an-an-1=2n-1-2n-2,
bn=
2n-2
n

當(dāng)n=1時(shí),b1=a1=1,
∴數(shù)列{bn}的通項(xiàng)公式bn=
1,n=1
2n-2
n
,n≥2
點(diǎn)評(píng):本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log0.5
x2+2x-8
的遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)閇0,1],f(0)=f(1),且對(duì)任意不同的x1,x2都有|f(x2)-f(x1)|<|x2-x1|,求證:|f(x2)-f(x1)|≤
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD與BDEF 均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求證:平面BDEF⊥平面ABCD;
(3)若AB=2,求三棱錐C-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的離心率為
3
、則其漸近線的斜率為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=1+2t
y=
1
2
-t
,曲線C的參數(shù)方程為
x=2cosθ
y=sinθ
,設(shè)直線l與曲線C交于兩點(diǎn)A,B.
(1)求|AB|;
(2)設(shè)P為曲線C上的一點(diǎn),當(dāng)△ABP的面積取最大值時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間三條直線,任何兩條不共面,且兩兩互相垂直,另一條直線l與這三條直線所成的角均為α,則tanα=( 。
A、1
B、
2
C、
3
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知E:(x+
3
2+y2=16,點(diǎn)F(
3
,0),點(diǎn)P是圓E上任意一點(diǎn),線段PF的垂直平分線和半徑PE相交于點(diǎn)Q.記動(dòng)點(diǎn)Q的軌跡為C,另有動(dòng)點(diǎn)M(x,y)(x≥0)到點(diǎn)N(2,0)的距離比它到直線x=-1的距離多1,記點(diǎn)M的軌跡為C1,軌跡C2的方程為x2=y
(1)求軌跡C和C1的方程
(2)已知點(diǎn)T(-1,0),設(shè)軌跡C1與C2異于原點(diǎn)O的交點(diǎn)為R,若懂直線l與直線OR垂直,且與軌跡C交于不同的兩點(diǎn)A、B,求
TA
TB
的最小值
(3)在滿足(2)中的條件下,當(dāng)
TA
TB
取得最小值時(shí),求△TAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,且a≠1,設(shè)命題p:0<a<1;q:方程ax2-x+
1
2
=0有兩個(gè)不等的實(shí)數(shù)根.若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案