20.已知三棱錐P-ABC的每個(gè)頂點(diǎn)都在球O的表面上,PB⊥底面ABC,AC=2,PB=6,且sin∠ABC=$\frac{1}{4}$,則球O的表面積為(  )
A.80πB.96πC.100πD.144π

分析 利用正弦定理求出△ABC外接圓的半徑,利用勾股定理求出球的半徑,即可求出球O的表面積.

解答 解:由題意,設(shè)球的半徑為R,△ABC外接圓的半徑為r,則2r=$\frac{2}{\frac{1}{4}}$=8,
∵PB⊥底面ABC,PB=6,
∴(2R)2=62+82,∴R2=25,
∴球O的表面積為4πR2=100π,
故選C.

點(diǎn)評(píng) 本題考查球O的表面積,考查學(xué)生的計(jì)算能力,正確求出球的半徑是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.畫(huà)出函數(shù)f(x)=x2-|4x-4|的圖象,并求出當(dāng)x∈[-3,$\frac{5}{2}$]時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2-2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4,最小值1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=$\frac{f(x)}{x}$.若不等式g(2x)-k•2x≥0對(duì)任意x∈[1,2]恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,短軸長(zhǎng)為4.橢圓與直線(xiàn)y=x+2相交于A、B兩點(diǎn).
(1)求橢圓的方程;  
(2)求弦長(zhǎng)|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)y=f(x)滿(mǎn)足:對(duì)任意x,y∈R,有f(x-y)=f(x)-f(y),且當(dāng)x>0時(shí),f(x)<0.
(1)判斷y=f(x)的奇偶性;
(2)求不等式f(x-1)>f(3-2x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+5,x≤-1}\\{{x}^{2},-1<x<1}\\{2x,x≥1}\end{array}\right.$.
(1)求f(-3)、f[f(-3)];  
(2)若f(a)=$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知α,β是空間中兩個(gè)不同的平面,l為平面β內(nèi)的一條直線(xiàn),則“l(fā)∥α”是“α∥β”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)是(-∞,0)∪(0,+∞)上的偶函數(shù),x>0時(shí)f(x)=x-$\frac{1}{x}$,求x<0時(shí)f(x)的表達(dá)式,判斷f(x)在(-∞,0)上的單調(diào)性,并用定義給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)的定義域是R,f(0)=3,對(duì)任意x∈R,f(x)+f′(x)>1,則不等式ex•f(x)>ex+2的解集為( 。
A.{x|x>0}B.{x|x<0}C.{x|x<-1或0<x<1}D.{x|x>1或x<-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案