已知f(x)=cos4x-sin4x+2
3
sinxcosx.
(1)把f(x)化成Asin(ωx+φ)的形式;
(2)求f(x)的最小正周期和值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:(1)利用倍角公式和輔助角公式化簡(jiǎn).
(2)利用T=
ω
求周期,利用三角函數(shù)性質(zhì)求值域即可.
解答: 解:(1)f(x)=cos4x-sin4x+2
3
sinxcosx
=(cos2x-sin2x)(cos2x+sin2x)+2
3
sinxcosx
=cos2x+
3
sin2x=2sin(2x+
π
6
).
(2)f(x)的最小正周期T=
2
=π,
∵-1≤sin(2x+
π
6
)≤1.
∴-2≤2sin(2x+
π
6
)≤2.
∴值域是{-2,2].
點(diǎn)評(píng):本題考查三角函數(shù)公式的應(yīng)用,三角函數(shù)圖象與性質(zhì),均屬高中必須掌握的重點(diǎn)和基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x,x>0
2x+1,x≤0
,若f(a)+f(1)=0,則實(shí)數(shù)a的值為( 。
A、-3B、-2C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下圖展示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R的映射過程:區(qū)間(0,1)中的實(shí)數(shù)m對(duì)應(yīng)數(shù)軸上的點(diǎn)M(點(diǎn)A對(duì)應(yīng)實(shí)數(shù)0,點(diǎn)B對(duì)應(yīng)實(shí)數(shù)1),如圖①;將線段AB圍成一個(gè)圓,使兩端點(diǎn)A、B恰好重合,如圖②;再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長(zhǎng)度對(duì)應(yīng)于圖③中的弧ADM的長(zhǎng)度,如圖③,圖③中直線AM與x軸交于點(diǎn)N(n,0),則m的象就是n,記作f(m)=n.
給出下列命題:①f(
1
4
)=1;
②f(
1
2
)=0;
③f(x)是奇函數(shù);
④f(x)在定義域上單調(diào)遞增,
則所有真命題的序號(hào)是(  )
A、①②B、②③C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+β)=
3
5
,cos(α-β)=
1
10
,求[sinα+cos(π+α)]•[sinβ-sin(
π
2
+β)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A為鈍角,且2asinB=
3
b.
(1)求∠A的大;
(2)若a2-b2=2c,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,|
OA
|=a,|
OB
|=b,OD是AB邊上的高,若
AD
AB
,則實(shí)數(shù)λ等于( 。
A、
a•(b-a)
|a-b|2
B、
a
•(
a
-
b
)
|
a
-
b
|2
C、
a•(b-a)
|a-b|
D、
a•(a-b)
|a-b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-an(n∈N+).
(1)求證:數(shù)列{an-1}為等比數(shù)列,并寫出{an}的通項(xiàng)公式;
(2)設(shè)bn=a(an-1)-(2n+1)(a為常數(shù)).若b3>0,當(dāng)且僅當(dāng)a=3時(shí),|bn|取到最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a<b<0,則下列不等式不成立是(  )
A、
1
a-b
1
a
B、
1
a
1
b
C、|a|>|b|
D、a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列賦值語句正確的是( 。
A、x+y=y-2
B、m=m+1
C、m-n=2
D、5=x

查看答案和解析>>

同步練習(xí)冊(cè)答案