考點(diǎn):數(shù)列的求和,等比關(guān)系的確定
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)直接由{b
n}是以q為公比的等比數(shù)列結(jié)合b
n=
加以證明;
(2)由a
n+2=a
nq
2分別寫(xiě)出a
2n-1、2a
2n,得到c
n=a
2n-1+2a
2n后即可判斷數(shù)列{c
n}是等比數(shù)列;
(3)由(2)求得
=q2-2n,
=q2-2n,代入S
2n=
+
+
+
+…+
+
后分組,然后利用等比數(shù)列的前n項(xiàng)和得答案.
解答:
(1)證明:由
=q,有
=
=q,∴a
n+2=a
nq
2(n∈N
+);
(2)解:{c
n}是首項(xiàng)為5,以q
2為公比的等比數(shù)列.
證明:∵a
n=q
n-2q
2,
∴a
2n-1=a
2n-3q
2=…=a
1q
2n-2,
a
2n=a
2n-2q
2=…=a
2q
n-2,
∴c
n=a
2n-1+2a
2n=a
1q
2n-2+2a
2q
2n-2=(a
1+2a
2)q
2n-2=5q
2n-2.
∴{c
n}是首項(xiàng)為5,以q
2為公比的等比數(shù)列;
(3)解:由(2)得
=q2-2n,
=q2-2n,
于是S
2n=
+
+
+
+…+
+
=
(++…+)+(++…+)=
(1++…+)+(1++…+)=
(1++…+).
當(dāng)q=1時(shí),S
2n=
+
+
+
+…+
+
=
(1++…+)=
n;
當(dāng)q≠1時(shí),S
2n=
+
+
+
+…+
+
=
(1++…+)=
()=[].
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了數(shù)列的分組求和,考查了等比數(shù)列的前n項(xiàng)和,是中檔題.