8.已知集合M={x|x2-4x+3<0},N={x|2x≤8},則M∩N=( 。
A.(1,3]B.(0,3]C.(-∞,3]D.(1,3)

分析 通過二次不等式求解推出集合M,N然后直接求解M∩N.

解答 解:由x2-4x+3<0可得(x-1)(x-3)<0,解得1<x<3,故M=(1,3),
由2x≤8=23可得x≤3,可得N={-∞,3],
所以M∩N=(1,3).
故選:D

點(diǎn)評(píng) 本題考查集合的交集的運(yùn)算,確定集合的公共元素,是求解集合交集的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在空間直角坐標(biāo)系中,點(diǎn)M(1,2,3)關(guān)于xOy平面的對(duì)稱點(diǎn)的坐標(biāo)是(  )
A.(-1,-2,3)B.(1,-2,-3)C.(-1,2,-3)D.(1,2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x||2x-1|≤3},集合B={x|x2+(4-a)x-4a>0},若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax-1(a>0,a≠1)的圖象經(jīng)過點(diǎn)(3,$\frac{1}{9}$).
(1)求a的值;
(2)求函數(shù)f(x)=a2x-ax-2+8,當(dāng)x∈[-2,1]時(shí)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≥0\end{array}\right.$,則使|m-1|>$\frac{y-1}{x+1}$恒成立的m的取值范圍是(  )
A.[0,2]B.(-∞,0]∪[2,+∞)C.[2,+∞)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)y=$\frac{1}{2}$cosx,(0≤x≤π)的圖象和直線y=2、直線x=π、y軸圍成一個(gè)封閉的平面圖形,則這個(gè)封閉圖形的面積是( 。
A.B.C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線l經(jīng)過點(diǎn)A(2,-3)和B(-1,3),則直線l的斜率是( 。
A.-2B.$-\frac{1}{2}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn=4(a1+a3+…+a2n-1),a1a2a3=27,則a6=( 。
A.27B.81C.243D.729

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個(gè)玻璃瓶中裝有大小相等質(zhì)地均勻顏色各不相同的玻璃小球共3個(gè),現(xiàn)隨機(jī)的倒出小球(至少倒出一個(gè)),倒后重新將倒出小球裝回原瓶中,進(jìn)行下一次操作.現(xiàn)通過倒玻璃球走跳棋游戲,規(guī)則如下:棋盤上標(biāo)有第0站,第1站,第2站…一枚棋子開始停在第0站,棋手將玻璃瓶中的小球倒出,若倒出的小球是奇數(shù)個(gè),將棋子向前走一步;若倒出的小球是偶數(shù)個(gè),則將棋子向前走兩步.然后將倒出的小球裝回原玻璃瓶,準(zhǔn)備下一次操作.設(shè)棋子跳到第n站(n∈N*)的概率為Pn,已知P0=1.
(1)求倒出的小球是奇數(shù)個(gè)的概率;
(2)求P1、P2;
(3)證明:數(shù)列$\{{P_n}-{P_{n-1}}\},n∈{N^*}$是等比數(shù)列,并求Pn

查看答案和解析>>

同步練習(xí)冊(cè)答案