12.已知{an},{bn}均為等差數(shù)列,其前n項(xiàng)和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+2}{n+3}$,則$\frac{{a}_{5}}{_{5}}$=$\frac{5}{3}$.

分析 利用等差數(shù)列的性質(zhì)即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:$\frac{{a}_{5}}{_{5}}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{9(_{1}+_{9})}{2}}$=$\frac{{S}_{9}}{{T}_{9}}$=$\frac{2×9+2}{9+3}$=$\frac{5}{3}$.
故答案為:$\frac{5}{3}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.求C1與C2交點(diǎn)的極坐標(biāo);(ρ<0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖的程序框圖,若輸入的a=π-1,b=ln$\frac{1}{3}$,c=20.1,則輸出的結(jié)果a為(  )
A.20.1B.ln$\frac{1}{3}$C.π-1D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知關(guān)于x的方程3x2-2ax+a-1=0(x∈R).
(1)證明不論a取任何實(shí)數(shù)值,方程必有兩個(gè)不相等的實(shí)數(shù)根;
(2)若兩根x1,x2滿足|x1-x2|=$\frac{2}{3}$,求a的值;
(3)若兩根x1,x2滿足x1<2且x2>2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率等于$\frac{{\sqrt{3}}}{2}$,且雙曲線$\frac{x^2}{3}-{y^2}=1$的焦點(diǎn)恰好是橢圓C的兩個(gè)頂點(diǎn)
(1)求橢圓C的方程.
(2)若點(diǎn)P是第一象限內(nèi)該橢圓上的一點(diǎn),且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求點(diǎn)P的坐標(biāo);
(3)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩個(gè)點(diǎn)A,B,且∠AOB為銳角(其中O為原點(diǎn)),求直線l斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,已知A(l,0),把一粒黃豆隨機(jī)投到正方形OABC內(nèi),則黃豆落到陰影區(qū)域內(nèi)的概率是( 。
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.集合M、N滿足條件:M∪N={1,2},則這樣的有序集合對(duì)(M,N)共有(  )
A.6個(gè)B.7個(gè)C.8個(gè)D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=sin(ωx+$\frac{π}{6}$)(ω∈N*)經(jīng)過點(diǎn)($\frac{2π}{9}$,$\frac{1}{2}$),則ω的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最小值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案