12.(1)求函數(shù)$f(x)=2cosxsin({x+\frac{π}{6}})$的單增區(qū)間;
(2)函數(shù)$y=3{cos^2}x-4cosx+1,x∈[0,\frac{π}{2}]$的最小值.

分析 (1)f(x)解析式利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),再利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),整理為一個(gè)角的正弦函數(shù),利用正弦函數(shù)的單調(diào)性確定出單增區(qū)間即可;
(2)函數(shù)解析式配方變形后,由x的范圍求出cosx的范圍,利用二次函數(shù)的性質(zhì)確定出最小值即可.

解答 解:(1)f(x)=2cosx($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=$\sqrt{3}$sinxcosx+cos2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$,
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,得到-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z,
則f(x)的單增區(qū)間為[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z;
(2)y=3cos2x-4cosx+1=3(cosx-$\frac{2}{3}$)2-$\frac{1}{3}$,
∵x∈[0,$\frac{π}{2}$],∴cosx∈[0,1],
∴-$\frac{1}{3}$≤y≤1,
則函數(shù)y的最小值為-$\frac{1}{3}$.

點(diǎn)評(píng) 此題考查了三角函數(shù)中的恒等變換應(yīng)用,涉及的知識(shí)有:兩角和與差的正弦函數(shù)公式,二倍角的正弦、余弦函數(shù)公式,正弦函數(shù)的單調(diào)性,以及二次函數(shù)的性質(zhì),熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2,且a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$,求T2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知A={a+1,-3},B={a-3,a2},且A∩B={-3},則a為( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)f(x)為偶函數(shù),對(duì)于任意的x>0的數(shù)都有f(2+x)=-2f(2-x),f(1)=4,則f(-3)等于( 。
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知等差數(shù)列{an}滿足:a2+a4=6,a6=S3,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若k∈N*,{bn}為等比數(shù)列且b1=ak,b2=a3k,b3=S2k,求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)雙曲線x2-y2=1的兩漸近線與直線x=$\frac{\sqrt{2}}{2}$圍成的三角形區(qū)域(包含邊界)為D,P(x,y)為區(qū)域D內(nèi)的動(dòng)點(diǎn),則目標(biāo)函數(shù)z=2x-y的最大值為(  )
A.-2B.-$\frac{\sqrt{2}}{2}$C.0D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.A(l,0)是圓x2+y2=1上點(diǎn),在圓上其他位置任取一點(diǎn)B,連接A,B兩點(diǎn),則|AB|≤1的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)函數(shù)y=f(x)的圖象與y=2x的圖象關(guān)于直線y=x對(duì)稱,則f(2)+f(4)=( 。
A.6B.3C.17D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=x3+2x2-ax+1在區(qū)間(0,1)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,7).

查看答案和解析>>

同步練習(xí)冊(cè)答案