分析 利用同角三角函數(shù)關系式求解.
解答 解:∵0<θ<π,cotθ=t,
∴tanθ=$\frac{1}{t}$,
∴cos2θ=1+tan2θ=1+$\frac{1}{{t}^{2}}$,
∴當t>0時,cosθ=$\sqrt{1+\frac{1}{{t}^{2}}}$=$\frac{\sqrt{{t}^{2}+1}}{t}$,
當t<0時,cosθ=-$\sqrt{1+\frac{1}{{t}^{2}}}$=$\frac{\sqrt{{t}^{2}+1}}{t}$.
∴cosθ=$\frac{\sqrt{{t}^{2}+1}}{t}$.
故答案為:$\frac{\sqrt{{t}^{2}+1}}{t}$.
點評 本題考查余弦函數(shù)值的求法,是基礎題,解題時要認真審題,注意同角三角函數(shù)關系式的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}+1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com