8.不等式(a-1)x2-(a-2)x+1>0對(duì)一切實(shí)數(shù)都成立,求實(shí)數(shù)a的取值范圍.

分析 討論a的取值,利用判別式△<0,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求出不等式恒成立時(shí)a的取值范圍.

解答 解:當(dāng)a=1時(shí),不等式為x+1>0,
解得x>-1,此時(shí)不等式對(duì)一切實(shí)數(shù)x不恒成立;
當(dāng)a>1時(shí),判別式△<0,即為(a-2)2-4(a-1)<0,
解得4-2$\sqrt{2}$<a<4+2$\sqrt{2}$,此時(shí)不等式對(duì)一切實(shí)數(shù)x恒成立;
當(dāng)a<1時(shí),不等式對(duì)一切實(shí)數(shù)x不恒成立.
綜上,實(shí)數(shù)a的取值范圍是(4-2$\sqrt{2}$,4+2$\sqrt{2}$).

點(diǎn)評(píng) 本題考查了不等式的恒成立問(wèn)題,解題時(shí)應(yīng)注意運(yùn)用二次函數(shù)的圖象和性質(zhì),是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.若x<1,求$\frac{{x}^{2}-2x+2}{2x-2}$的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,a4=-4,a5=3a3,則S10=-70.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知在Rt△ABC中,C=90°,則sinAsinB的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知{an}、{bn}是項(xiàng)數(shù)相同的等比數(shù)列,求證:{anbn}、{can}(c為非零常數(shù))是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性.
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0在x∈(0,+∞)上恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.對(duì)于函數(shù)y=f(x)的定義域?yàn)镈,如果存在區(qū)間[m,n]⊆D,同時(shí)滿足下列條件:
①f(x)在[m,n]上是單調(diào)函數(shù);②當(dāng)f(x)的定義域?yàn)閇m,n]時(shí),值域也是[m,n],則稱區(qū)間[m,n]是函數(shù)f(x)的“Z區(qū)間”.對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{alnx-x,x>0}\\{\sqrt{-x}-a,x≤0}\end{array}\right.$(a>0).
(Ⅰ) 若a=1,求函數(shù)f(x)在(e,1-e)處的切線方程;
(Ⅱ) 若函數(shù)f(x)存在“Z區(qū)間”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E為PD的中點(diǎn).
(Ⅰ)求證:CE∥面PAB
(Ⅱ)求證:平面PAC⊥平面PDC
(Ⅲ)求直線EC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.現(xiàn)有4人去旅游,旅游地點(diǎn)有A,B兩個(gè)地方可以選擇,但4人都不知道去哪里玩,于是決定通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時(shí)去A地,擲出其他的則去B地.
(1)求這4個(gè)人恰好有1個(gè)人去A地的概率;
(2)用X,Y分別表示這4個(gè)人中去A,B兩地的人數(shù),記ξ=X•Y,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

同步練習(xí)冊(cè)答案