在等差數(shù)列中:若a1+a2+a3=42,Sn=105,an+an-1+aa-2=84,求n及此數(shù)列的a1,d,an
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得a1+an=42,代入求和公式可n值,再由題意可得a1和d的方程組,解方程組可得.
解答: 解:∵在等差數(shù)列中a1+a2+a3=42,an+an-1+aa-2=84,
兩式相加結(jié)合等差數(shù)列的性質(zhì)可得3(a1+an)=42+84,
解得a1+an=42,
∴Sn=
n(a1+an)
2
=21n=105,解得n=5,
又由a1+a2+a3=42可得3a1+3d=42,
由S5=5a1+10d=105聯(lián)立可解得a1=7,d=7
∴an=a5=a1+4d=35
∴n的值為5,a1=7,d=7,an=35.
點(diǎn)評:本題考查等差數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將奇函數(shù)f(x)=Asin(ωx+ϕ)(A≠0,ω>0,-
π
2
<ϕ<
π
2
)的圖象向左平移
π
6
個單位得到的圖象關(guān)于原點(diǎn)對稱,則ω的值可以為( 。
A、6B、3C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,sinA:sinB:sinC=k:(k+1):2k(k≠0),求實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在R上的函數(shù),下列命題正確的是( 。
A、若f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,且在(a,b)內(nèi)有零點(diǎn),則有f(a)•f(b)<0
B、若f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,且有f(a)•f(b)>0,則其在(a,b)內(nèi)沒有零點(diǎn)
C、若f(x)在區(qū)間(a,b)上的圖象是一條連續(xù)不斷的曲線,且有f(a)•f(b)<0,則其在(a,b)內(nèi)有零點(diǎn)
D、如果函數(shù)f(x)在區(qū)間[a,b]上的圖象是一條連續(xù)不斷的曲線,且有f(a)•f(b)<0,則其在(a,b)內(nèi)有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
,1),
b
=(
3
,k),且
a
b
的夾角為
π
3
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線ρ2-2ρcosθ-2ρsinθ+1=0(0≤θ≤2π),則直線
x=3t-2
y=4t-1.
(t為參數(shù))與曲線的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC的所有棱長都等于1,則三棱錐P-ABC的內(nèi)切球的表面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行圖中的程序框圖(其中[x]表示不超過x的最大整數(shù)),則輸出的S值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2AB,F(xiàn)為棱CE上異于點(diǎn)C、E的動點(diǎn),則下列說法正確的有( 。
①直線DE與平面ABF平行;
②當(dāng)F為CE的中點(diǎn)時,BF⊥平面CDE;
③存在點(diǎn)F使得直線BF與AC平行;
④存在點(diǎn)F使得DF⊥BC.
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案