分析 (1)根據(jù)函數(shù)f(x)的圖象,求出A、T、ω與φ的值即可;
(2)根據(jù)正弦函數(shù)的單調(diào)性,即可求出f(x)的單調(diào)遞增區(qū)間.
解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+ϕ)的圖象知,
A=2,
T=$\frac{13π}{3}$-$\frac{π}{3}$=4π,∴ω=$\frac{1}{2}$,
令$\frac{1}{2}$×$\frac{π}{3}$+φ=2kπ,k∈Z,
∴φ=2kπ-$\frac{π}{6}$;
又|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{6}$;
∴函數(shù)f(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$);
(2)根據(jù)正弦函數(shù)的單調(diào)性,
令-$\frac{π}{2}$+2kπ≤$\frac{1}{2}$x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
則-$\frac{π}{3}$+2kπ≤$\frac{1}{2}$x≤$\frac{2π}{3}$+2kπ,k∈Z,
解得-$\frac{2π}{3}$+4kπ≤x≤$\frac{4π}{3}$+4kπ,k∈Z,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ],k∈Z.
點評 本題考查了利用三角函數(shù)的部分圖象求解析式的應(yīng)用問題,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $3\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2)或(-1,-2) | B. | (-1,-2) | C. | (2,1) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<-$\frac{1}$或x>$\frac{1}{a}$} | B. | {x|-$\frac{1}{a}$<x<$\frac{1}$} | ||
C. | {x|x<-$\frac{1}{a}$或x>$\frac{1}$} | D. | {x|-$\frac{1}$<x<0或0<x<$\frac{1}{a}$} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com