求下列表達(dá)式的值
(1)若tanα=2,求
sinα+cosα
sinα-cosα
+cos2α的值;
(2)已知sin(α+
π
12
)=
1
3
,求cos(α+
12
)的值;
(3)設(shè)角α的終邊經(jīng)過點(diǎn)P(-6a,-8a)(a≠0),求sinα-cosα的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:(1)由條件利用同角三角函數(shù)的基本關(guān)系求得
sinα+cosα
sinα-cosα
+cos2α的值.
(2)由條件利用誘導(dǎo)公式求得cos(α+
12
)的值.
(3)由條件利用任意角的三角函數(shù)的定義求得sinα和cosα的值,可得sinα-cosα的值.
解答: 解:(1)若tanα=2,則
sinα+cosα
sinα-cosα
+cos2α=
sinα+cosα
sinα-cosα
+
cos2α
sin2α+cos2α
=
tanα+1
tanα-1
+
1
tan2α+1
=
2+1
2-1
+
1
4+1
=
16
5

(2)cos(α+
12
)=cos[(α+
π
12
)+
π
2
]=-sin(α+
π
12
)=-
1
3

(3)設(shè)角α的終邊經(jīng)過點(diǎn)P(-6a,-8a)(a≠0),
當(dāng)a>0時(shí),r=|OP|=10a,sinα=
y
r
=-
4
5
,cosα=
x
r
=-
3
5
,則sinα-cosα=-
1
5

當(dāng)a<0時(shí),r=|OP|=-10a,sinα=
y
r
=
4
5
,cosα=
x
r
=
3
5
,則sinα-cosα=
1
5
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式,任意角的三角函數(shù)的定義,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果集合A={x|ax2+2x+1=0}中只有一個(gè)元素,則a的值是( 。
A、0
B、0 或1
C、1    x+2∈[-2,0)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log
1
2
x,則f(-8)的值為( 。
A、3
B、-3
C、
1
4
D、-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=
3
5
,且α∈(0,
π
2
),則tan2α的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從6名教師中,選派4名同時(shí)到3個(gè)邊遠(yuǎn)地區(qū)支教,每個(gè)地區(qū)至少選派1名.
(1)共有多少種不同的選派方法?
(2)若6名教師中的甲、乙二位教師不能同時(shí)支教,共有多少種不同的選派方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(-
2
2
,
3
2
)在橢圓上,且
PF1
PF2
=
1
4
,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點(diǎn)A,B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)
OA
OB
=λ,且滿足
2
3
≤λ≤
3
4
時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<-2或x>5},B={x|a<x<a+4}.若A∩B=ϕ,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,PA⊥平面ABC,PA=AB,AB⊥BC,M為AB中點(diǎn).
(Ⅰ)證明:面PBC⊥面PAB;
(Ⅱ)若PC與平面PAB所成角的正切值為
6
2
,求直線MC與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一根細(xì)金屬絲下端掛著一個(gè)半徑為1cm的金屬球,將它浸沒在底面半徑為2cm的圓柱形容器內(nèi)的水中,現(xiàn)將金屬絲向上提升,當(dāng)金屬球全部被提出水面時(shí),容器內(nèi)的水面下降的高度是
 
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案