設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有意義.對(duì)于給定的正數(shù)k,已知函數(shù)fk(x)=
f(x),f(x)≤k
k,f(x)>k
,取函f(x)=3-x-e-x.若對(duì)任意的x∈(-∞,+∞),恒有fk(x)=f(x),則k的取值范圍為
 
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:用導(dǎo)數(shù)確定函數(shù)函數(shù)的單調(diào)性,求解函數(shù)的最值,進(jìn)而求出k的范圍,進(jìn)一步得出所要的結(jié)果.
解答: 解:對(duì)任意的x∈(-∞,+∞),恒有fk(x)=f(x),等價(jià)于對(duì)任意的x∈(-∞,+∞),恒有f(x)=3-x-e-x≤k,
由f'(x)=-1+e-x,知當(dāng)x∈(-∞,0)時(shí),f'(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(0,+∞)時(shí),f'(x)<0,f(x)單調(diào)遞減;則f(x)max=f(0)=2;
故k≥2.
故答案為:k≥2.
點(diǎn)評(píng):本題考查學(xué)生對(duì)新定義型問題的理解和掌握程度,理解好新定義的分段函數(shù)是解決本題的關(guān)鍵,將所求解的問題轉(zhuǎn)化為求解函數(shù)的最值問題,利用了導(dǎo)數(shù)的工具作用,體現(xiàn)了恒成立問題的解題思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(1,
2
2
),離心率為
2
2
,左、右焦點(diǎn)分別為F1,F(xiàn)2.點(diǎn)P為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A,B和C,D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1,PF2的斜率存在,且分別為k1,k2
①求證:
1
k1
-
3
k2
為定值;
②是否存在這樣的點(diǎn)P,使直線OA,OB,OC,OD的斜率之和為0?若存在,
求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a1+a2+a3+…+a101=0,則a1+a101與0的大小關(guān)系為(  )
A、a1+a101>0
B、a1+a101<0
C、a1+a101=0
D、以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+2,x≤0
|2-x|,x>0
若f(-4)=f(0),則函數(shù)y=f(x)-ln(x+2)的零點(diǎn)個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比為正數(shù)的等比數(shù)列,若a3=4,a5=16,則數(shù)列{an}的前5項(xiàng)和為=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+1,若f(|x|)有4個(gè)單調(diào)區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)sinx,給出下列五個(gè)說法:
①f(
1921π
12
)=
1
4

②f(x)在區(qū)間[-
π
6
,
π
3
]上單調(diào)遞增.
③f(x)的圖象關(guān)于點(diǎn)(-
π
4
,0)成中心對(duì)稱.
④將函數(shù)f(x)的圖象向右平移
4
個(gè)單位可得到y(tǒng)=
1
2
cos2x的圖象.
⑤若f(
x
2
-
π
6
)=
3
10
,
6
≤x≤
3
,則cosx=-
4+3
3
10

其中正確說法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+2nx2-12x的減區(qū)間(-2,2)
(1)試求m,n的值;
(2)求過點(diǎn)A(1,-11)且與曲線y=f(x)相切的切線方程;
(3)過點(diǎn)A(1,t)是否存在曲線y=f(x)相切的3條切線,若存在求實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+102x+1
x2+1
,若f(a)=
2
3
,則f(-a)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案