15.設(shè)函數(shù)${f_1}(x)=x,{f_2}(x)={x^2},{a_i}=\frac{i}{99},i=0,1,2,3,…,99$,記Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,…,下列結(jié)論正確的是( 。
A.S1=1=S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

分析 根據(jù)f1(a1+i)-f1(ai)=$\frac{i+1}{99}$-$\frac{i}{99}$=$\frac{1}{99}$,可得S1=$\frac{1}{99}×99$=1.f2(ai+1)-f2(ai)=$(\frac{i+1}{99})^{2}-(\frac{i}{99})^{2}$,根據(jù)Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,…,求出S1,S2,比較與1的關(guān)系即可.

解答 解:由題意:f1(a1+i)-f1(ai)=$\frac{i+1}{99}$-$\frac{i}{99}$=$\frac{1}{99}$,
∴S1=|f1(a1)-f1(a0)|+|f1(a2)-f1(a1)|+…+|f1(a99)-f1(a98)|=$\frac{1}{99}×99$=1.
又因為:f2(ai+1)-f2(ai)=$(\frac{i+1}{99})^{2}-(\frac{i}{99})^{2}$=$\frac{2i+1}{9{9}^{2}}$,(i=0,1,2…99)
∴S2f2(a1)-f1(a0)|+|f2(a2)-f2(a1)|+…+|f2(a99)-f2(a98)|=$\frac{1+3+…+98*2+1}{9{9}^{2}}=1$
所以S1=S2=1.
故選A.

點評 本題考查了對新定義的理解和運(yùn)用能力.含絕對值符號式的運(yùn)算,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c,cos2B-5cos(A+C)=2.
(1)求角B的值;
(2)若cosA=$\frac{1}{7}$,△ABC的面積為10$\sqrt{3}$,求BC邊上的中線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)g(x)=ax-lnx,a∈R,
(1)是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
(2)當(dāng)x∈(0,e]時,證明:${e^2}x>\frac{5}{2}+(1+\frac{1}{x})lnx$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐O-ABCD中,底面ABCD是矩形,
(1)若E,F(xiàn)分別為OC,BD中點,求證:EF∥平面OAD;
(2)若側(cè)面OAD⊥底面ABCD.
(i)求證:OA⊥CD;
(ii)若OA=OD=$\sqrt{2}$,AD=2,求證:平面OAB⊥平面OCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的最小正周期為π,則ω=2;若其圖象向右平移$\frac{π}{3}$個單位后得到的函數(shù)為偶函數(shù),則φ的值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{2}{3}$,則$|{\overrightarrow{OA}}|$的取值范圍是( 。
A.$(0,\frac{{\sqrt{14}}}{3}]$B.$(\frac{{\sqrt{14}}}{3},\sqrt{2}]$C.$(\frac{{\sqrt{5}}}{2},\sqrt{5}]$D.$(\frac{{\sqrt{7}}}{2},\sqrt{7}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若復(fù)數(shù)z=i(i-3i-1)(i是虛數(shù)單位),則|$\overline{z}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等差數(shù)列{an}中,${a_3}=\frac{π}{6}$,則cos(a1+a2+a6)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,以點(1,0)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓截y軸所得弦長為2.

查看答案和解析>>

同步練習(xí)冊答案