7.若復(fù)數(shù)z=i(i-3i-1)(i是虛數(shù)單位),則|$\overline{z}$|=$\sqrt{5}$.

分析 直接由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:z=i(i-3i-1)=-2i2-i=2-i,
則|$\overline{z}$|=$\sqrt{{2}^{2}+(-1)^{2}}=\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)求模,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若X是離散型隨機(jī)變量,P(X=a)=$\frac{1}{3}$,P(X=b)=$\frac{2}{3}$,且a<b,又已知E(X)=$\frac{2}{3}$,D(X)=$\frac{2}{9}$,則a+b的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=x2+2a|x|+4a2-3有三個(gè)不同的零點(diǎn),則函數(shù)g(x)=f(x)-f(|a|+a+1)的零點(diǎn)個(gè)數(shù)是4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)${f_1}(x)=x,{f_2}(x)={x^2},{a_i}=\frac{i}{99},i=0,1,2,3,…,99$,記Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,…,下列結(jié)論正確的是( 。
A.S1=1=S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知由不等式$\left\{\begin{array}{l}x≤0\\ y≥0\\ y-kx≤2\\ y-x-4≤0\end{array}\right.$確定的平面區(qū)域Ω的面積為7,則k的值( 。
A.-2B.-1C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若雙曲線的一個(gè)焦點(diǎn)為(0,-13)且離心率為$\frac{13}{5}$,其標(biāo)準(zhǔn)方程為$\frac{y^2}{25}-\frac{x^2}{144}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)兩圓C1,C2都與y=x和y=-x相切,且都過點(diǎn)$(\frac{{3\sqrt{2}}}{2},\frac{{5\sqrt{2}}}{2})$,則兩圓心的距離|C1C2|=( 。
A.$4\sqrt{2}$B.4C.$8\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,PA⊥平面ABCD.點(diǎn)Q在PA上,且PA=4PQ=4.∠CDA=∠BAD=$\frac{π}{2}$,AB=2,CD=1,AD=$\sqrt{2}$.M,N分別為PD,PB的中點(diǎn).
(Ⅰ)求證:MQ∥平面PCB;
(Ⅱ)求截面MCN與底面ABCD所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=x3+bx2+cx+d的圖象如圖所示,則函數(shù)$g(x)={x^2}+\frac{2b}{3}x+\frac{c}{3}$的單調(diào)遞減區(qū)間是( 。
A.$({\frac{1}{2},+∞})$B.$({-∞,\frac{1}{2}})$C.(-2,3)D.(-∞,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案