5.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,0)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓截y軸所得弦長為2.

分析 求出圓心到直線的距離d的最大值,求出所求圓的標(biāo)準(zhǔn)方程,即可求出半徑最大的圓截y軸所得弦長.

解答 解:圓心到直線的距離d=$\frac{|-m-1|}{\sqrt{{m}^{2}+1}}$=$\sqrt{1+\frac{2}{m+\frac{1}{m}}}$$≤\sqrt{2}$
∴m=1時(shí),圓的半徑最大為$\sqrt{2}$,
∴所求圓的標(biāo)準(zhǔn)方程為(x-1)2+y2=2.
∴此時(shí)截y軸所得弦長為2
故答案為:2.

點(diǎn)評 本題考查所圓的標(biāo)準(zhǔn)方程,考查點(diǎn)到直線的距離公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)${f_1}(x)=x,{f_2}(x)={x^2},{a_i}=\frac{i}{99},i=0,1,2,3,…,99$,記Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,…,下列結(jié)論正確的是( 。
A.S1=1=S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,PA⊥平面ABCD.點(diǎn)Q在PA上,且PA=4PQ=4.∠CDA=∠BAD=$\frac{π}{2}$,AB=2,CD=1,AD=$\sqrt{2}$.M,N分別為PD,PB的中點(diǎn).
(Ⅰ)求證:MQ∥平面PCB;
(Ⅱ)求截面MCN與底面ABCD所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在長方體ABCD-A1B1C1D1中,AA1=1,AD=DC=$\sqrt{3}$.在線段A1C1上有一點(diǎn)Q.且C1Q=$\frac{1}{3}{C_1}{A_1}$,則平面QDC與平面A1DC所成銳二面角為( 。
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列命題中為真命題的是( 。
A.若x≠0,則$x+\frac{1}{x}$≥2
B.“實(shí)數(shù)a=1”是“直線x+ay=0與直線x-ay=0互相垂直”的充要條件
C.命題“?x>0,x2-x≤0”的否定是“?x>0,x2-x>0”
D.命題“若-1<x<1,則x2<1”的否命題是“若x2≥1,則x≥1或x≤-1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+m),(m∈R),其中x∈[0,15],a>0且a≠1.
(1)若1是關(guān)于方程f(x)-g(x)=0的一個(gè)解,求m的值.
(2)當(dāng)0<a<1時(shí),不等式f(x)≥g(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x3+bx2+cx+d的圖象如圖所示,則函數(shù)$g(x)={x^2}+\frac{2b}{3}x+\frac{c}{3}$的單調(diào)遞減區(qū)間是( 。
A.$({\frac{1}{2},+∞})$B.$({-∞,\frac{1}{2}})$C.(-2,3)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中能用二分法求零點(diǎn)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,ABCD為平行四邊形,BCEF是邊長為1的正方形,$BF⊥BA,∠DAB=\frac{π}{3},AB=2AD$.
(1)求證:BD⊥FC;
(2)求直線DE與平面DFC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案