17.正方體ABCD-A1B1C1D1的棱長為6,半徑為$\sqrt{6}$的圓O1在平面A1B1C1D1內(nèi),其圓心O1為正方形A1B1C1D1的中心,P為圓O1上有一個動點,則多面體PABCD的外接球的表面積為(  )
A.88πB.80πC.$\frac{88\sqrt{22}}{3}$πD.$\frac{160\sqrt{5}}{3}$π

分析 設(shè)球心到底面的距離為x,則x2+(3$\sqrt{2}$)2=(6-x)2+6,求出x,即可求出多面體PABCD的外接球的半徑,可得多面體PABCD的外接球的表面積.

解答 解:設(shè)球心到底面的距離為x,則x2+(3$\sqrt{2}$)2=(6-x)2+6
∴x=2,∴x2+(3$\sqrt{2}$)2=22,
∴多面體PABCD的外接球的半徑為$\sqrt{22}$,
∴多面體PABCD的外接球的表面積為88π.
故選A.

點評 本題考查多面體PABCD的外接球的半徑、表面積,考查學生的計算能力,正確建立方程是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)A={4,5,6,8},B={3,5,7,8},則A∪B=( 。
A.A∪B={5,8}B.A∪B={3,4,5,6,7,8}C.A∪B={4,6}D.A∪B={4,5,8}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知點G(5,4),圓C1:(x-1)2+(y-4)2=25,過點G的動直線l與圓C1相交于E、F兩點,線段EF的中點為C,且C在圓C2上.
(1)若直線mx+ny-1=0(mn>0)經(jīng)過點G,求mn的最大值;
(2)求圓C2的方程;
(3)若過點A(1,0)的直線l1與圓C2相交于P,Q兩點,線段PQ的中點為M,l1與l2:x+2y+2=0的交點為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.非零向量$\overrightarrow a$,$\overrightarrow b$,滿足|$\overrightarrow a$-$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|=2|$\overrightarrow a$|,則向量$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$夾角的余弦值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.如圖,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的大小為120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.由直線y=x-4,曲線y=$\sqrt{2x}$以及x軸所圍成的圖形面積為( 。
A.$\frac{25}{2}$B.13C.$\frac{40}{3}$D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若關(guān)于x的一元二次方程(a-2)x2-2ax+a+1=0沒有實數(shù)解,求ax+3>0的解集{x|x<-$\frac{3}{a}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知銳角α,β滿足cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,則sinβ的值為(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{25}$D.$\frac{\sqrt{5}}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖([x]表示不超過x的最大整數(shù)),則輸出S的值為( 。
A.4B.5C.7D.9

查看答案和解析>>

同步練習冊答案