分析 (1)連結(jié)BD交AC于O,連結(jié)OE,則由PB∥平面ACE得PB∥OE,于是$\frac{PE}{ED}=\frac{OB}{OD}=\frac{AB}{CD}$;
(2)證明AD⊥平面PCD,做出F的位置得出F到平面PCD的距離與AD的關(guān)系,代入體積公式計(jì)算.
解答 解:(1)連結(jié)BD交AC于O,連結(jié)OE.
∵PB∥平面ACE,PB?平面PBD,平面ACE∩平面PBD=OE,
∴PB∥OE,
∴$\frac{PE}{DE}=\frac{OB}{OD}$,
又△AOB∽△COD,∴$\frac{OB}{OD}=\frac{AB}{CD}=\frac{3}{2}$.
∴$\frac{PE}{DE}=\frac{3}{2}$.
(2)過E作EM∥PC交CD于M,過M作MN∥BC交AB于N,過N作NF∥PB交PA于F,連接EF.
則平面EFNM為平面α.
∵E為PD的中點(diǎn),∴M為CD的中點(diǎn),∴CM=$\frac{1}{2}$CD=1,
∴NB=CM=1,∴$\frac{PF}{PA}=\frac{BN}{AB}=\frac{1}{3}$.
∵PD⊥平面ABCD,AD?平面ABCD,
∴PD⊥AD,又AD⊥CD,PD?平面PCD,CD?平面PCD,PD∩CD=D,
∴AD⊥平面PCD,
∵PD=AD=5,PD⊥AD,∴PA=5$\sqrt{2}$,
∴F到平面PCE的距離h=$\frac{1}{3}$AD=$\frac{5}{3}$.
∴VP-CEF=VF-PCE=$\frac{1}{3}{S}_{△PCE}•h$=$\frac{1}{3}×\frac{1}{2}×\frac{5}{2}×2×\frac{5}{3}$=$\frac{25}{18}$.
點(diǎn)評(píng) 本題考查了線面平行的性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -π+arcsin$\frac{\sqrt{2}}{4}$ | B. | -π-arcsin$\frac{\sqrt{2}}{4}$ | C. | -$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$ | D. | -2π+arcsin$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,3) | B. | [0,3] | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S12 | B. | S7 | C. | S6 | D. | S1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com