分析 (1)求導(dǎo)數(shù),確定切線的斜率,即可求出切線的方程;
(2)令$g(x)=x-1-\frac{lnx}{x}$,由題意,x>0時(shí),$g(x)=x-1-\frac{lnx}{x}≥0$恒成立,即x>0時(shí),x2-x-lnx≥0恒成立.
解答 (1)解:∵$y'=\frac{1-lnx}{x^2}$,∴k切=y'|x=1=1,故切線L的方程是y=x-1
(2)證明:令$g(x)=x-1-\frac{lnx}{x}$,由題意,x>0時(shí),$g(x)=x-1-\frac{lnx}{x}≥0$恒成立
即x>0時(shí),x2-x-lnx≥0恒成立
記h(x)=x2-x-lnx,則$h'(x)=2x-1-\frac{1}{x}=\frac{{2{x^2}-x-1}}{x}=\frac{(2x+1)(x-1)}{x}$
由h'(x)=0得,$x=-\frac{1}{2}$(舍去)或x=1
當(dāng)0<x<1時(shí),h'(x)<0,當(dāng)x>1時(shí),h'(x)>0∴h(x)min=h(1)=0
故曲線C不可能在直線L的上方.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2<x<1 | B. | -3<x<1 | C. | -3<x<-2 | D. | x>1或x<-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com