【題目】在四棱錐中,平面平面,四邊形為直角梯形,∥,,,,,為的中點.
(1)求證:∥平面;
(2)若點在線段上,滿足,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)證法1:要證明線面平行,轉化為證明線線平行,取中點,連接,,證明;證法2:要證明線面平行轉化為證明面面平行,取中點,連接,,轉化為平面平面;(2)取中點,連接、,易得,平面,以為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,求平面的法向量,利用公式求線面角的正弦值.
(Ⅰ)證法1:取中點,連接,.
為中點,,且.
又,且,,且,
四邊形為平行四邊形,,
又平面,平面,
平面;
證法2: 取中點,連接,.
為中點,,
又平面,平面,
平面.
又且,
四邊形為平行四邊形,,
又平面,平面,
平面,又,
平面平面,又平面,
平面;
(Ⅱ)取中點,連接、,.
,.
又平面平面,且平面平面,
平面,平面,
以為坐標原點,、、所在直線分別為軸、軸、
軸建立空間直角坐標系,如圖所示,
,,
,,
,
設平面的法向量,
則,,
得,取,則,
設與平面所成的角為,
,
與平面所成的角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】江蘇省高郵市素有“魚米之鄉(xiāng)”之稱,高郵城西有風光秀麗的高郵湖,湖內盛產花鰱魚,記花鰱魚在湖中的游速為,花鰱魚在湖中的耗氧量的單位數(shù)為,經研究花鰱魚的游速與成正比,經測定,當花鰱魚的耗氧量為200單位時,其游速為.
(1)求關于的函數(shù)關系式
(2)計算花鰱魚靜止時耗氧量的單位數(shù).
(3)如果某條花鰱魚的游速提高了1,那么它的耗氧量的單位數(shù)是原來的多少倍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對兩個變量y和x進行回歸分析,則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程必過樣本點的中心.
B.殘差平方和越小的模型,擬合的效果越好.
C.用相關指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好.
D.回歸分析是對具有相關關系的兩個變量進行統(tǒng)計分析的一種常用方法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是常數(shù)).
(1)若,求函數(shù)的值域;
(2)若為奇函數(shù),求實數(shù).并證明的圖像始終在的圖像的下方;
(3)設函數(shù),若對任意,以為邊長總可以構成三角形,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某企業(yè)生產的某種產品中抽取100件,測量這些產品的一項質量指標值,由測量表得如下頻數(shù)分布表:
質量指標值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產品質量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產的這種產品符合“質量指標值不低于95的產品至少要占全部產品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),直線.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)求證:對于任意,直線都不是曲線的切線;
(Ⅲ)試確定曲線與直線的交點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市工業(yè)部門計劃對所轄中小型企業(yè)推行節(jié)能降耗技術改造,下面是對所轄企業(yè)是否支持技術改造進行的問卷調查的結果:
支持 | 不支持 | 合計 | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計 | 560 |
已知從這560家企業(yè)中隨機抽取1家,抽到支持技術改造的企業(yè)的概率為.
(1)能否在犯錯誤的概率不超過0.025的前提下認為“是否支持節(jié)能降耗技術改造”與“企業(yè)規(guī)!庇嘘P?
(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進行獎勵,分別獎勵中型企業(yè)20萬元,小型企業(yè)10萬元.求獎勵總金額為20萬元的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com