3.與向量$\overrightarrow{a}$=(6,8)共線的單位向量是( 。
A.(-$\frac{3}{5}$,-$\frac{4}{5}$)B.(0,1)C.(3,4)D.($\frac{4}{5}$,$\frac{3}{5}$)

分析 利用共線向量定理以及單位向量判斷選項(xiàng)即可.

解答 解:向量$\overrightarrow{a}$=(6,8),
可知:-$\frac{4}{5}$×6=$-\frac{3}{5}$×8,
并且$\sqrt{(-\frac{3}{5})^{2}+(-\frac{4}{5})^{2}}$=1.
與向量$\overrightarrow{a}$=(6,8)共線的單位向量是(-$\frac{3}{5}$,-$\frac{4}{5}$).
故選:A.

點(diǎn)評 本題考查向量的坐標(biāo)運(yùn)算,向量共線的充要條件,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)單位向量.
(1)若|3$\overrightarrow{a}$-2$\overrightarrow$|=3,試求|3$\overrightarrow{a}+\overrightarrow$|的值;
(2)若$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,試求向量$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow$與$\overrightarrow{n}$=2$\overrightarrow$-$\overrightarrow{a}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cosx=$\frac{1}{3}$,-π<x<0,則角x的值為-arccos$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)F(x)=${∫}_{0}^{x}$(t2+2t-8)dt(x>0)的遞增區(qū)間為( 。
A.(2,+∞)B.(0,2)C.(-4,+∞)D.(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.5555-1除以8的余數(shù)是( 。
A.6B.7C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,若x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)$\frac{2-i}{1+{i}^{5}}$在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知首項(xiàng)不為0的等差數(shù)列{an}中,前n項(xiàng)和為Sn,滿足a4=2a2,且S1,S2,S4-1成等比數(shù)列.
(Ⅰ)求an和Sn;
(Ⅱ)記${b_n}=\frac{1}{S_n}$,數(shù)列{bn}的前項(xiàng)和Tn.若3m-8≤Tn<2m-1對任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x+2},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f(-3)=)-1.

查看答案和解析>>

同步練習(xí)冊答案