4.已知函數(shù)f(x)=$\frac{{{{(1+cos2x)}^2}-2cos2x-1}}{{sin(\frac{π}{4}+x)sin(\frac{π}{4}-x)}}$.
(1)求f(-$\frac{11π}{12}$)的值;
(2)當(dāng)x∈[0,$\frac{π}{4}$)時,求g(x)=$\frac{1}{2}$f(x)+sin2x的最大值和最小值.

分析 (1)利用三角恒等變換化簡函數(shù)的解析式,可得f(-$\frac{11π}{12}$)的值.
(2)由條件利用正弦函數(shù)的定義域和值域,求得g(x)的最大值和最小值.

解答 解:(1)∵$f(x)=\frac{{{{(1+cos2x)}^2}-2cos2x-1}}{{sin(\frac{π}{4}+x)cos(\frac{π}{4}+x)}}=\frac{{{{cos}^2}2x}}{{\frac{1}{2}sin(\frac{π}{2}+2x)}}=\frac{{2{{cos}^2}2x}}{cos2x}=2cos2x$,
∴$f(-\frac{11π}{12})=2cos(-\frac{11π}{12})=2cos\frac{π}{6}=\sqrt{3}$.
(2)$g(x)=cos2x+sin2x=\sqrt{2}sin(2x+\frac{π}{4})$,
∵$x∈[0,\frac{π}{4})$,
∴$2x+\frac{π}{4}∈[\frac{π}{4},\frac{3π}{4})$,
∴當(dāng)$x=\frac{π}{8}$時,g(x)有最大值$\sqrt{2}$;當(dāng)x=0時,g(x)有最小值1.

點評 本題主要考查三角恒等變換,正弦函數(shù)的定義域和值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個長方體截去一部分之后,剩余部分的三視圖如圖所示,則截去部分體積與剩余部分體積的比值為(  )
A.$\frac{27}{25}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-1|-|2x-2|,且f(x)的最大值記為k.
(Ⅰ)求不等式f(x)≥x的解集;
(Ⅱ)是否存在正數(shù)a、b,同時滿足a+2b=k,$\frac{2}{a}$+$\frac{1}$=4-$\frac{1}{ab}$?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.下列哪一組中的函數(shù)f(x)與g(x)相等?
(1)f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1;
(2)f(x)=x2,g(x)=($\sqrt{x}$)4;
(3)f(x)=x2,g(x)=$\root{3}{{x}^{6}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x3+5x2-7x-3=(x-4)3+a(x-4)2+b(x-4)+c,則(a,b,c)=(17,81,113).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,函數(shù)f(x)的圖象是折線段ABC,其中A,B,C的坐標(biāo)分別為(0,4),(2,0),(4,4),則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商場五一進(jìn)行抽獎促銷活動,當(dāng)日在該商場消費(fèi)的顧客即可參加抽獎活動,抽獎情況如下:消費(fèi)金額每滿500元,可獲得一次抽獎機(jī)會,即設(shè)消費(fèi)金額x元,x∈[500,1000)可抽獎1次,x∈[1000,1500)可抽獎2次,x∈[1500,2000)可抽獎3次,以此類推.
抽獎箱中有9個大小形狀完全相同的小球,其中4個紅球、3個白球、2個黑球(每次只能抽取一個,且不放回抽。
第一種抽獎方式:若抽得紅球,獲獎金10元;若抽得白球,獲獎金20元;若抽得黑球,獲獎金40元.
第二種抽獎方式:抽到紅球,獎金0元;抽到白球,獲得獎金50元;若抽到黑球,獲獎金100元.
(1)若某顧客在該商場當(dāng)日消費(fèi)金額為2000元,用第一種抽獎方式進(jìn)行抽獎,求獲得獎金70元的概率
(2)若某顧客在該商場當(dāng)日消費(fèi)金額為1200元,請同學(xué)們告訴這位顧客哪種抽獎方式對他更有利.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=sinx+cosx+sin2x,若?t∈R,x∈R,asint+3a+1≥f(x)恒成立,則實數(shù)a的取值范圍是( 。
A.[0,+∞)B.$[\frac{{\sqrt{2}}}{2},+∞)$C.$[{\frac{{\sqrt{2}}}{4},+∞})$D.$[\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在數(shù)列{an}中,an=-2n2+29n+3,則此數(shù)列最大項的值是( 。
A.102B.$\frac{865}{8}$C.$\frac{817}{8}$D.108

查看答案和解析>>

同步練習(xí)冊答案