13.已知向量$\overrightarrow{a}$=(2,-1,-2),$\overrightarrow$=(1,1,-4).
(1)計算2$\overrightarrow{a}$-3$\overrightarrow$和|2$\overrightarrow{a}$-3$\overrightarrow$|;
(2)求<$\overrightarrow{a}$,$\overrightarrow$>

分析 (1)利用向量的坐標運算性質(zhì)、模的計算公式即可得出.
(2)利用向量夾角公式即可得出.

解答 解:(1)2$\overrightarrow{a}$-3$\overrightarrow$=2(2,-1,-2)-3(1,1,-4)=(4,-2,-4)-(3,3,-12)=(1,-5,8).
|2$\overrightarrow{a}$-3$\overrightarrow$|=$\sqrt{{1}^{2}+(-5)^{2}+{8}^{2}}$=3$\sqrt{10}$.
(2)∵cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{2-1+8}{\sqrt{9}×\sqrt{18}}$=$\frac{\sqrt{2}}{2}$,
<$\overrightarrow{a}$,$\overrightarrow$>∈[0,π],
∴<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{4}$.

點評 本題考查了向量的坐標運算性質(zhì)、模的計算公式、向量夾角公式、數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=mx2-4mx+n(m>0),則f(1),f(2),f(4)從小到大的排列順序為f(2)<f(1)<f(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)集合S={0,1,2,3,4,5},A是S的一個子集,當x∈A時,若有x-1∉A且x+1∉A,則稱x為集合A的一個“孤立元素”,寫出S中所有無“孤立元素”的4元子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列3個命題:
①棱臺的側(cè)棱所在的直線必交于一點,圓臺的母線所在的直線也交于一點;
②一個半圓繞其直徑所在直線旋轉(zhuǎn)一周形成的幾何體為球;
③分別以矩形兩條不等的邊所在直線為旋轉(zhuǎn)軸,將矩形旋轉(zhuǎn),所得到的兩個圓柱是兩不同的圓柱.
其中正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x2-ax-a)ex
(1)當a=-1時,求f(x)在x=0處的切線方程.
(2)討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1的左、右焦點分別為F1、F2,點A 在曲線C上,∠F1AF2 的平分線交x軸于點M
(I)若點M的坐標為(2,0),則|AF2|=6;
(II)若|AF1|+|AF2|=24,則△F1AF2的面積為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=|x2-2x-3|,若a<b<1,且f(a)=f(b),則u=2a+b的最小值為( 。
A.-4B.3-2$\sqrt{10}$C.3-4$\sqrt{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若xn>0,且$\underset{lim}{n→∞}$xn=a,則a>0不一定成立,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式x+$\frac{2}{x}$>2的解集為{x|x>0}.

查看答案和解析>>

同步練習(xí)冊答案