8.觀察下列等式
l+2+3+…+n=$\frac{1}{2}$n(n+l);
l+3+6+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+…$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
可以推測(cè),1+5+15+…+$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),(n∈N*).

分析 根據(jù)已知中的等式,分析出第K個(gè)等式右邊系數(shù)和因式個(gè)數(shù)的變化規(guī)律,歸納可得答案.

解答 解:根據(jù)已知中的等式:
l+2+3+…+n=$\frac{1}{2}$n(n+l);
l+3+6+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+…$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
歸納可得:第K個(gè)等式右邊系數(shù)的分母是K!,后面依次是從n開(kāi)始的K個(gè)連續(xù)整數(shù)的積,
故1+5+15+…+$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),(n∈N*
故答案為:$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),(n∈N*

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.解方程:$\sqrt{x}$+$\sqrt{x+5}$+2$\sqrt{{x}^{2}+5x}$=25-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E,F(xiàn)分別是AB,PC的中點(diǎn),設(shè)AC中點(diǎn)為O,若∠PDA=45°,則EF與平面ABCD所成的角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,四面體ABCD中,AB,BC,CD,BD兩兩垂直,BC=BD=2,點(diǎn)E是CD的中點(diǎn),異面直線AD與BE所成角的余弦值為$\frac{\sqrt{10}}{10}$,則直線BE與平面ACD所成角的正弦值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.四面體有一條棱長(zhǎng)為x,其余棱長(zhǎng)為4.當(dāng)四面體體積最大時(shí),其外接球的表面積為$\frac{80}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在四棱錐P-ABCD中,AB∥CD,AB⊥AD,PA=AB=2CD=4,$PB=2AD=4\sqrt{2}$,平面PAB⊥平面ABCD.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的余弦值;
(3)設(shè)點(diǎn)Q為線段PB上一點(diǎn),且直線QC與平面PAC所成角的正弦值為$\frac{{\sqrt{3}}}{3}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將正整數(shù)1,2,3,4…排列成陣(如圖),在2處轉(zhuǎn)第一個(gè)彎,在3處轉(zhuǎn)第二個(gè)彎,在5處轉(zhuǎn)第三個(gè)彎,…則第2016個(gè)轉(zhuǎn)彎處的數(shù)為( 。
A.1006010B.1006110C.1017073D.1017072

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示,圖中網(wǎng)格小正方形邊長(zhǎng)為1,則該幾何體的體積是( 。
A.4B.$\frac{16}{3}$C.$\frac{20}{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.100件產(chǎn)品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,則第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案