A. | $\frac{5}{11}$ | B. | -$\frac{5}{4}$ | C. | -$\frac{5}{11}$ | D. | $\frac{5}{4}$ |
分析 將兩等式兩邊平方相加或相減,結(jié)合同角的平方關(guān)系和二倍角的余弦公式、兩角和差正弦公式,以及和差化積公式,化簡整理,即可得到所求值.
解答 解:sinα+cosβ=$\frac{\sqrt{3}}{2}$,①
cosα+sinβ=$\sqrt{2}$,②
①2+②2,可得(sin2α+cos2α)+(sin2β+cos2β)+2(sinαcosβ+cosαsinβ)=$\frac{11}{4}$,
即為2+2sin(α+β)=$\frac{11}{4}$,即有sin(α+β)=$\frac{3}{8}$,
①2-②2,可得(sin2α-cos2α)+(cos2β-sin2β)+2(sinαcosβ-cosαsinβ)=-$\frac{5}{4}$,
即為-cos2α+cos2β+2sin(α-β)=-$\frac{5}{4}$,
即有2sin(α-β)+2sin(α-β)sin(α+β)=-$\frac{5}{4}$,
即為2sin(α-β)(1+$\frac{3}{8}$)=-$\frac{5}{4}$,
解得sin(α-β)=-$\frac{5}{11}$.
故選:C.
點(diǎn)評(píng) 本題考查三角函數(shù)的求值,注意運(yùn)用平方法和三角函數(shù)的恒等變換公式,以及化簡整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(2,+∞) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 3 | C. | 3或-1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com