2.已知空間四邊形OABC,M,N分別是對邊OA,BC的中點,點G在線段MN上,且,設(shè)$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則x,y,z的值分別是( 。
A.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$B.x=$\frac{1}{3}$,y=$\frac{1}{3}$,z=$\frac{1}{6}$C.x=$\frac{1}{3}$,y=$\frac{1}{6}$,z=$\frac{1}{3}$D.x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$

分析 利用向量的三角形法則和共線定理、平行四邊形法則即可得出.

解答 解:如圖所示,
∵$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{MG}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{MN}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{ON}$-$\frac{2}{3}$$\overrightarrow{OM}$=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,
又有$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,
∴x=$\frac{1}{6}$,y=$\frac{1}{3}$,z=$\frac{1}{3}$,
故選:D.

點評 本題考查了向量的三角形法則和共線定理、平行四邊形法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓O:x2+y2=1和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,PM,切點為Q,M,且滿足|PQ|=|PA|.
(1)求實數(shù)a,b間滿足的等量關(guān)系;
(2)若以P為圓心的圓P與圓O有公共點,試求圓P的半徑最小時圓P的方程;
(3)當(dāng)P點的位置發(fā)生變化時,直線QM是否過定點,如果是,求出定點坐標,如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在正三棱柱ABC-A1B1C1中,AA1=6,異面直線BC1與AA1所成角的大小為30°,求該三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知各項為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求證:{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}+{a_1}}}+\frac{1}{{{a_n}+{a_2}}}+…+\frac{1}{{{a_n}+{a_n}}}+\frac{1}{{{a_n}+{a_{n+1}}}}({n∈{N^*}})$,求證:${b_n}≤\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知各項為正數(shù)的數(shù)列{an}的前{Sn},滿足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求證:{an}為等差數(shù)列,并求an
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,已知線段AB在平面α內(nèi),線段AC⊥α,線段BD⊥AB,線段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,則CD的長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=x-2sinx,則$f({-\frac{π}{6}})、f({-1})、f({{{log}_3}1.2})$的大小關(guān)系為(  )
A.$f({{{log}_3}1.2})>f({-\frac{π}{6}})>f({-1})$B.$f({-\frac{π}{6}})>f({{{log}_3}1.2})>f({-1})$
C.$f({-\frac{π}{6}})>f({-1})>f({{{log}_3}1.2})$D.$f({-1})>f({-\frac{π}{6}})>f({{{log}_3}1.2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)的對稱軸x=-2,f(x)的圖象被x軸截得的弦長為2$\sqrt{3}$,且滿足f(0)=1.
(1)求f(x)的解析式;
(2)若f(($\frac{1}{2}$)x)>k,對x∈[-1,1]恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若b<a<0,則下列結(jié)果①a+b<ab;②|a|>|b|;③$\frac{1}>\frac{1}{a}$>0;④表達式$\frac{a}+\frac{a}$最小值為2中,正確的結(jié)果的序號有①.

查看答案和解析>>

同步練習(xí)冊答案