11.不等式$\frac{3x-1}{2-x}$<0的解集是{x|x<$\frac{1}{3}$或x>2}.

分析 原不等式等價(jià)于(3x-1)(x-2)>0,解關(guān)于x的一元二次不等式可得.

解答 解:不等式$\frac{3x-1}{2-x}$<0等價(jià)于(3x-1)(x-2)>0,
對應(yīng)方程(3x-1)(x-2)=0的兩根為x=$\frac{1}{3}$或x=2,
∴原不等式的解集為{x|x<$\frac{1}{3}$或x>2},
故答案為:{x|x<$\frac{1}{3}$或x>2}.

點(diǎn)評 本題考查分式不等式的解集,轉(zhuǎn)化為一元二次不等式是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1}{x}-{log_2}\frac{2+x}{2-x}$.
(1)求f(x)的定義域;
(2)判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,已知圓的面積為3140平方厘米,求內(nèi)接正方形ABCD的面積(π取3.14).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\sqrt{1-\frac{1}{2}sinx}$的值域?yàn)閇$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在六棱柱ABCDEFA1B1C1D1E1F1中.
(1)化簡$\overrightarrow{{{A}_{1}F}_{1}}$-$\overrightarrow{EF}$+$\overrightarrow{AB}$+$\overrightarrow{{CC}_{1}}$,并在圖中標(biāo)出化簡結(jié)果的向量.
(2)化簡$\overrightarrow{AB}$+$\overrightarrow{{CC}_{1}}$+$\overrightarrow{DE}$+$\overrightarrow{{{B}_{1}D}_{1}}$,并在圖中標(biāo)出化簡結(jié)果的向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$+$\frac{1}{\sqrt{sinx}}$的定義域是{x|0<x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知tanα=3,求下列各式的值:
(1)$\frac{4sin(α-2π)-cos(4π+α)}{3sin(α-2π)-5cos(α-6π)}$.
(2)$\frac{si{n}^{2}α-2sinαcosα-co{s}^{2}α}{4co{s}^{2}α-3si{n}^{2}α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.集合M={(x.y)|x2+y2-6x+8y-39=0},N{(x,y)|x2+y2=r2},若M∩N=∅,則正數(shù)r的取值范圍是( 。
A.0<r≤5B.0<r<5C.r>13D.r>13或0<r<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知映射f:A→B,其中A=B=R,對應(yīng)法則f:x→y=($\frac{1}{3}$)x2+2x,對于實(shí)數(shù)m∈B在集合A中存在元素與之對應(yīng),則m的取值范圍是(  )
A.m≤3B.m≥3C.m>3D.0<m≤3

查看答案和解析>>

同步練習(xí)冊答案