2.已知向量$\overrightarrow{a}$=(3,-2)則|$\overrightarrow{a}$|=( 。
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

分析 根據(jù)向量$\overrightarrow{a}$的坐標(biāo)即可得出向量$\overrightarrow{a}$的長度.

解答 解:$|\overrightarrow{a}|=\sqrt{{3}^{2}+(-2)^{2}}=\sqrt{13}$.
故選:C.

點(diǎn)評(píng) 考查向量坐標(biāo)的定義,根據(jù)向量坐標(biāo)求向量長度的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若圓C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0上有四個(gè)不同的點(diǎn)到直線l:x-y+c=0的距離為2,則c的取值范圍是( 。
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-2,2)D.(-2$\sqrt{2}$,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點(diǎn)處切線方程是y=5x-10
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+$\frac{1}{3}$mx,若函數(shù)g(x)存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若sinθ+cosθ=$\frac{{2\sqrt{2}-1}}{3}$(0<θ<π),則tanθ=-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某高中學(xué)校共有學(xué)生1800名,各年級(jí)男女學(xué)生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二女生的概率是0.16.
高一年級(jí)高二年級(jí)高三年級(jí)
女生324x280
男生316312y
現(xiàn)用分層抽樣的方法,在全校抽取45名學(xué)生,則應(yīng)在高三抽取的學(xué)生人數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列不等式成立的是(  )
A.若|a|<b,則a2>b2B.若|a|>b,則a2>b2C.若a>b,則a2>b2D.若a>|b|,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=1-2x,g[f(x)]=2x+x,則g(-1)的值為( 。
A.1B.3C.-$\frac{1}{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=5,公差d=-1,數(shù)列{bn}為等比數(shù)列,b2=1,公比為q(q>0),cn=anbn,Sn為{cn}的前n項(xiàng)和,記Sn=c1+c2+..+cn
(Ⅰ)求b1+b2+b3的最小值;
(Ⅱ)求S10;
(Ⅲ)求出使Sn取得最大的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.化簡sin(α-$\frac{π}{2}$)•tan(π-α)=sinα.

查看答案和解析>>

同步練習(xí)冊(cè)答案