17.已知集合M={x|lnx>0},N={x|x2≤4},則M∩N=( 。
A.(1,2]B.[1,2)C.(1,2)D.[1,2]

分析 根據(jù)題意,化簡(jiǎn)集合M、N,求出M∩N即可.

解答 解:∵集合M={x|lnx>0}={x|x>1},
N={x|x2≤4}={x|-2≤x≤2},
∴M∩N={x|1<x≤2}=(1,2].
故選:A.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與基本運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={x|x(1-x)>0},B={0,1,2},則A∩B=( 。
A.B.{0,1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若非空集合A={x|a+1≤x≤3a-5},集合B={x|1≤x≤16},則滿足A⊆(A∩B)的實(shí)數(shù)a的取值范圍是( 。
A.[0,7]B.[7,15]C.[3,7]D.[3,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在鈍角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=7,b=3,cosC=$\frac{11}{14}$.
(Ⅰ)求c和角A的大;
(Ⅱ)求sin(2C-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,則a+2c的最小值時(shí),最大邊所對(duì)角的余弦值是-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,則z=x2+y2-2x的最小值是(  )
A.3B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某地區(qū)交管部門為了對(duì)該地區(qū)駕駛員的某項(xiàng)考試成績(jī)進(jìn)行分析,隨機(jī)抽取了15分到45分之間的1000名學(xué)員的成績(jī),并根據(jù)這1000名駕駛員的成績(jī)畫出樣本的頻率分布直方圖(如圖),則成績(jī)?cè)赱30,35)內(nèi)的駕駛員人數(shù)共有300.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F1,P為左支上一點(diǎn),|PF1|=a,P0與P關(guān)于原點(diǎn)對(duì)稱,且$\overrightarrow{{P}_{0}{F}_{1}}$$•\overrightarrow{P{F}_{1}}$=0.則雙曲線的漸近線方程為( 。
A.y=±xB.y=$±\frac{\sqrt{6}}{2}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.給出下列命題:
①某地2015年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如圖,則這組數(shù)據(jù)的中位數(shù)為20;
②函數(shù)f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,則f(2${\;}^{\frac{1}{8}}$)>f(log2$\frac{1}{8}$)>f[($\frac{1}{8}$)2]
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3,
其中正確命題的序號(hào)是①②(把你認(rèn)為正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案