12.已知函數(shù)f(x)=ex-ax-1,(a為實(shí)數(shù)),g(x)=lnx-x
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)g(x)的極值;
(3)求證:lnx<x<ex(x>0)

分析 (1)求導(dǎo)數(shù)得到f′(x)=ex-a,然后討論a的符號(hào),從而可判斷導(dǎo)數(shù)符號(hào),這樣即可求出每種情況下函數(shù)f(x)的單調(diào)區(qū)間;
(2)可先求出函數(shù)g(x)的定義域,然后求導(dǎo),判斷導(dǎo)數(shù)的符號(hào),從而根據(jù)極值的概念求出函數(shù)g(x)的極值;
(3)可知a=1時(shí),f(x)在x=0處取得極小值,從而可得出ex>x+1,而由(2)可知g(x)在x=1處取得極大值,也是最大值-1,這樣即可得出lnx≤x-1<x,這樣便可得出要證的結(jié)論.

解答 解:(1)由題意得f′(x)=ex-a
當(dāng)a≤0時(shí),f′(x)>0恒成立,函數(shù)f(x)在R上單調(diào)遞增,
當(dāng)a>0時(shí),由f′(x)>0可得x>lna,由f′(x)<0可得x<lna,
故函數(shù)f(x)在(lna,+∞)上單調(diào)遞增,在(-∞,lna)上單調(diào)遞減;
(2)函數(shù)g(x)的定義域?yàn)椋?,+∞),${g^'}(x)=\frac{1}{x}-1$,
由g′(x)>0可得0<x<1;由g′(x)<0,可得x>1.
所以函數(shù)g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
故函數(shù)g(x)在x=1取得極大值,其極大值為ln1-1=-1.
(3)證明:當(dāng)a=1時(shí),f(x)=ex-x-1,
由(1)知,f(x)=ex-x-1在x=ln1=0處取得極小值,也是最小值,
且f(x)min=0,故ex-x-1>0(x>0),得到ex>x+1(x>0).
由(2)知,g(x)=lnx-x在x=l處取得最大值,且g(x)max=-1,
故lnx-x≤-1(x>0),得到lnx≤x-1<x(x>0).
綜上lnx<x<ex(x>0).

點(diǎn)評(píng) 本題考查根據(jù)導(dǎo)數(shù)符號(hào)求函數(shù)單調(diào)區(qū)間的方法,以及函數(shù)極值和最值的概念,以及根據(jù)導(dǎo)數(shù)求函數(shù)極值、最值的方法和過(guò)程,以及利用前面結(jié)論解決問(wèn)題的方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)=m-$\frac{4}{{3}^{x}+1}$,其中m為常數(shù)
(Ⅰ)若f(x)為奇函數(shù),試確定實(shí)數(shù)m的值;
(Ⅱ)若不等式f(x)+m>0對(duì)一切x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知f(x)的定義域?yàn)椋?,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<-xf′(x),則不等式f($\sqrt{x}$+1)>($\sqrt{x}$-1)f(x-1)的解集是(  )
A.(0,4)B.(1,4)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2x3-3ax2+1,其中a∈R.
(1)當(dāng)a>0時(shí),討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)求函數(shù)f(x)在區(qū)間[0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊為a、b、c,則下列命題正確的序號(hào)是①②③.
①若ab=c2,則C≤$\frac{π}{3}$
②若a+b=2c,則C≤$\frac{π}{3}$
③若a3+b3=c3,則C<$\frac{π}{2}$
④若(a+b)c<2ab,則C>$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=2,G是線段BE的中點(diǎn),點(diǎn)F在線段CD上且GF∥平面ADE.
(1)求證:BE⊥EF;
(2)求CF長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)=$\frac{\sqrt{{x}^{2}-(a+1)x+1}}{{x}^{2}-x+1}$定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( 。
A.[-3,-1]B.[-1,3]C.[1,3]D.[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.把函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}}$)的圖象上的所有點(diǎn)向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,且g(-x)=g(x),則( 。
A.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱
B.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱
C.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱
D.y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=-8x有相同的焦點(diǎn),且雙曲線過(guò)點(diǎn)M(3,$\sqrt{2}$),則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案