3.在已知空間四邊形ABCD中,E、F分別是棱AB、CD的中點(diǎn),若2EF=BC,且異面直線EF與BC所成的角為60°,則AD與BC所成的角是60°.

分析 取AC中點(diǎn)G,連結(jié)EF、EG、GF,推導(dǎo)出∠GEF=60°,EG=EF,GF∥AD,從而∠EGF是AD與BC所成的角(或所成角的補(bǔ)角),由此能求出AD與BC所成的角.

解答 解:取AC中點(diǎn)G,連結(jié)EF、EG、GF,
∵空間四邊形ABCD中,E、F分別是棱AB、CD的中點(diǎn),若2EF=BC,且異面直線EF與BC所成的角為60°,
∴EG∥BC,且EG=$\frac{1}{2}BC$,∴∠GEF=60°,EG=EF,GF∥AD,
∴∠EGF是AD與BC所成的角(或所成角的補(bǔ)角),
△EFG中,∵∠GEF=60°,EG=EF,
∴∠EGF=60°.
∴AD與BC所成的角是60°.
故答案為:60°.

點(diǎn)評 本題考查異面直線所成鐵的大小的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在三棱錐P-ABC中,平面PAC⊥平面ABC,PA⊥PC,AC⊥BC,D為AB的中點(diǎn),M為PD的中點(diǎn),N在棱BC上.
(Ⅰ)當(dāng)N為BC的中點(diǎn)時,證明:DN∥平面PAC;
(Ⅱ)求證:PA⊥平面PBC;
(Ⅲ)是否存在點(diǎn)N使得MN∥平面PAC?若存在,求出$\frac{CN}{CB}$的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足acosB+bcosA=2ccosC,則角C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.等差數(shù)列{an}中,a3=2,a6=5,則數(shù)列{${2}^{{a}_{n}}$}的前5項(xiàng)和等于( 。
A.15B.31C.63D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,圓O與離心率為$\frac{\sqrt{3}}{2}$的橢圓T:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個切點(diǎn)為M(2,0),O為坐標(biāo)原點(diǎn).
(1)求橢圓T與圓O的方程;
(2)過點(diǎn)M引兩條互相垂直的直線l1,l2與兩曲線分別交于點(diǎn)A,C與點(diǎn)B,D(均不重合)
①若$\overrightarrow{MB}$•$\overrightarrow{MD}$=3$\overrightarrow{MA}$$•\overrightarrow{MC}$,求l1與l2的方程;
②若AB與CD相交于點(diǎn)P,求證:點(diǎn)P在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.從2,3,4,5,6這5個數(shù)字中任取3個,則所得3個數(shù)之和為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,四棱錐P-ABCD中,ABCD是正方形,側(cè)棱PA⊥底面ABCD,PA=AB,M、N分別是PC、PD的中點(diǎn),則異面直線BM與CN所成的角大小為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.arccos$\frac{\sqrt{2}}{3}$D.π-arccos$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,已知acosB-(2c-b)cosA=0.
(Ⅰ)求角A的大;
(Ⅱ)若a=4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在如圖的正方體中,M、N分別為棱BC和棱CC′的中點(diǎn),則異面直線B′D′和MN所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊答案