分析 (Ⅰ)已知等式利用正弦定理化簡,整理后求出cosA的值,即可確定出角A的大;
(Ⅱ)由a,cosA的值,利用余弦定理列出關系式,再利用基本不等式求出bc的最大值,即可確定出三角形ABC面積的最大值.
解答 解:(Ⅰ)在△ABC中,已知等式acosB-(2c-b)cosA=0,
利用正弦定理化簡得:sinAcosB-(2sinC-sinB)cosA=0,
整理得:sinAcosB+sinBcosA=2sinCcosA,即sin(A+B)=sinC=2sinCcosA,
∴cosA=$\frac{1}{2}$,
∵A為三角形內(nèi)角,
∴A=$\frac{π}{3}$;
(Ⅱ)∵a=4,A=$\frac{π}{3}$,
∴由余弦定理得:16=b2+c2-bc≥2bc-bc=bc,即bc≤16,
當且僅當b=c時取等號,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc≤4$\sqrt{3}$,當且僅當b=c時取等號,
則△ABC面積的最小值為4$\sqrt{3}$.
點評 此題考查了正弦、余弦定理,三角形面積公式,以及兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年級 | 抽取份數(shù) | 優(yōu)秀人數(shù) | 優(yōu)秀率 |
高一 | 40 | a | 0.5 |
高二 | n | 18 | 0.6 |
高三 | 30 | 21 | b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {2} | C. | {-1,0,1} | D. | {-2,0,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com