某服裝廠從今年1月份開始制作某品牌運動裝,且前4個月的產(chǎn)量分別為1萬套,1.2萬套,1.3萬套,1.37萬套,由于產(chǎn)品質(zhì)量好,款式新穎,前幾個月的產(chǎn)品銷售情況良好,為在推銷產(chǎn)品時接受訂單不至于過多或過少,需要估測以后幾個月的產(chǎn)量,行家分析,產(chǎn)量的增加是由于工人生產(chǎn)熟練和理順了生產(chǎn)流程,因此廠里暫不準備增加設(shè)備和工人,假設(shè)你是廠長,你將會采用什么方法估算以后幾個月的產(chǎn)量?
考點:函數(shù)模型的選擇與應(yīng)用
專題:計算題,應(yīng)用題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意先作出散點圖,從而選擇函數(shù)模型,從而設(shè)出參數(shù)求出函數(shù)模型即可.
解答: 解:由題意作出散點圖,

分析可知,產(chǎn)量隨著月份增加而增加,
但增長速度越來越慢,
故可采用對數(shù)函數(shù)模型來估算以后幾個月的產(chǎn)量;
不妨設(shè)y=alnx+b;
則可得,
aln1+b=1
aln4+b=1.37

解得,a=0.267,b=1,
故用y=0.267lnx+1來估算以后幾個月的產(chǎn)量.
點評:本題考查了函數(shù)在實際問題中的應(yīng)用,注意作圖選擇函數(shù)模型,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知☉C的方程為(x-1)2+(y-1)2=1,直線l:4x+3y+c=0(c<-2)與x、y軸分別相交于A、B兩點,點P(x,y)(xy>0)是線段AB上的動點,如果直線l與圓C相切,則log3x+log3y的最大值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,若a+3b=1,則
1
a
+
3
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,2),
AB
=(2,3),
CB
=(1,-3),則C的坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等于1的三個正數(shù)a、b、c成等比數(shù)列,則(2-logba)(1+logca)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|cosθ|
cosθ
+
sinθ
|sinθ|
=0
,試判斷sin(cosθ)•cos(sinθ)的符號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=2與函數(shù)f(x)=3sin(ωx+Φ)(ω>0,|Φ|<
π
2
)的圖象在y軸右側(cè)的交點依次為A,B,C,…,A,C兩點在x軸上的射影是A1C1,若矩形ACC1A1的面積為4,且f(2013)=-
3
3
2
,則f(x)的單調(diào)區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點,一個焦點為(-2,0),且長軸長是短軸長的2倍,則該橢圓的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
a
x2
+lnx,g(x)=x3-x2-3.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在x1,x2∈[-
1
3
,3]
,使得g(x1)-g(x2)≥M成立,求滿足條件的最大整數(shù)M;
(Ⅲ)如果對任意的s,t∈[
1
3
,2]
,都有sf(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案