12.在△ABC中,角A,B,C的對邊分別是a,b,c
(1)若滿足a=3,A=45°的△ABC有兩個,求b的范圍;
(2)若a=4,b+c=5,中線AD=y,AB=x,且y與x有函數(shù)關(guān)系y=f(x)求f(x)表達式(寫明定義域).

分析 (1)由正弦定理可得:$\frac{3}{sin4{5}^{°}}$=$\frac{sinB}$,且∠B有兩解,可得b>3,且sinB=$\frac{\frac{\sqrt{2}}{2}b}{3}$<1,解出即可得出.
(2)由題意可得:BD=DC=2,在△ABD中,由余弦定理可得:x2=4+AD2-2×2×ADcos∠ADB.在△ADC中,由余弦定理可得:(5-x)2=4+AD2-2×2×ADcos∠ADC.相加化簡即可得出.

解答 解:(1)由正弦定理可得:$\frac{3}{sin4{5}^{°}}$=$\frac{sinB}$,且∠B有兩解,
∴b>3,且sinB=$\frac{\frac{\sqrt{2}}{2}b}{3}$<1,解得$3<b<3\sqrt{2}$,
∴b的取值范圍是$(3,3\sqrt{2})$.
(2)由題意可得:BD=DC=2,
在△ABD中,由余弦定理可得:x2=4+AD2-2×2×ADcos∠ADB,
在△ADC中,由余弦定理可得:(5-x)2=4+AD2-2×2×ADcos∠ADC.
相加可得:x2+(5-x)2=8+2AD2,即2x2-10x+17=2AD2,
∴y=$\sqrt{{x}^{2}-5x+\frac{17}{2}}$,x∈$(\frac{1}{2},\frac{9}{2})$.

點評 本題考查了正弦定理余弦定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知:數(shù)列{an}滿足a1+3a2+32a3+…+3n-1an=n,n∈N*
(1)求數(shù)列{an}的通項;
(2)設(shè)bn=log3$\frac{3}{{a}_{n}}$,求數(shù)列{$\frac{_{n}}{{a}_{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知圓C的半徑為1,圓心在x軸的負半軸上,直線3x+4y+1=0與圓C相切,則圓C的方程(  )
A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-1)2+y2=1D.(x+1)2+y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.要得到函數(shù)y=2sin2x的圖象,只需將$y={cos^2}x+\sqrt{3}sin2x-{sin^2}x$的圖象( 。
A.向右平移$\frac{π}{12}$個單位B.向左平移$\frac{π}{12}$個單位
C.向右平移$\frac{π}{6}$個單位D.向左平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=ax2+bx+3a是偶函數(shù),其定義域為[a-1,a],則a+b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在某次物理考試中,考生的成績ξ服從正態(tài)分布,即ξ:N(70,100),已知滿分為100分.
(1)試求考試成績ξ位于區(qū)間(50,90)內(nèi)的概率;
(2)若這次考試共有1000名學生參加,試估計這次考試及格(不小于60分)的人數(shù).
(附:若ξ:N(μ,σ2),則P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,P(μ-3σ<ξ<μ+3σ)=0.9974)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.底面為平行四邊形的四棱錐P-ABCD,AB=BC=14,PA=6,點M,N分別為AB,PC的中點.
(1)若$MN=4\sqrt{2}$,求一面直線PA與MN所成角的余弦值;
(2)若異面直線PA與MN所成的角為60°,求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.用二分法求方程x2-2=0在(1,2)內(nèi)近似解的過程中得f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根在區(qū)間(  )
A.(1.25,1.5)B.(1,1.25)C.(1.5,2)D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a,b,c分別是△ABC中角A,B,C所對的邊,且$(sinB+sinC+sinA)(sinB+sinC-sinA)=\frac{18}{5}sinBsinC$,b和c是關(guān)于x的方程x2-9x+25cosA=0的兩個根,則△ABC的形狀為( 。
A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

同步練習冊答案