6.某廠生產甲產品每千克需用原料A和原料B分別為a1、b1千克,生產乙產品每千克需用原料A和原料B分別為a2、b2千克.甲、乙產品每千克可獲利潤分別為d1、d2元.月初一次性購進本月用原料A、B各c1、c2千克.要計劃本月生產甲、乙兩種產品各多少千克才能使月利潤總額達到最大.在這個問題中,設全月生產甲、乙兩種產品分別為x千克、y千克,月利潤總額為z元,那么,用于求使總利潤z=d1x+d2y最大的數(shù)學模型中,約束條件為( 。
A.$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y≥{c}_{1}}\\{_{1}x+_{2}y≥{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$
B.$\left\{\begin{array}{l}{{a}_{1}x+_{1}y≤{c}_{1}}\\{{a}_{2}x+_{2}y≤{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$
C.$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y≤{c}_{1}}\\{_{1}x+_{2}y≤{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$
D.$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y={c}_{1}}\\{_{1}x+_{2}y={c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$

分析 由于月初一次性購進本月用原料A、B各c1、c2千克,據(jù)此生產的各種產品,所以它們的總量是不能超過的,最后,非負值約束條件表示各種產品的產量必須是正值,負值是沒有意義的.

解答 解:根據(jù)題意,設全月生產甲、乙兩種產品分別為x千克,y千克,月利潤總額為z元,
那么,用于求使總利潤z=d1x+d2y最大的數(shù)學模型中,
約束條件為$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y≤{c}_{1}}\\{_{1}x+_{2}y≤{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$,
選故:C.

點評 本題主要考查了簡單的線性規(guī)劃,考查了線性約束條件的確定,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.A、B、C是△ABC的三個內角,且C=2B.
(1)求證:sinA=3sinB-4sin3B;
(2)求$\frac{AB+BC}{AC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設點A(2,-3),B(-3,-2),直線l過點P(1,2)且與線段AB相交,則l的斜率k的取值范圍是(  )
A.k≤-1或k≥5B.-5≤k≤1C.-1≤k≤5D.k≤-5或k≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)=2x-2-x,a=($\frac{7}{9}$)${\;}^{-\frac{1}{2}}}$,b=($\frac{7}{9}$)${\;}^{\frac{1}{2}}}$,c=log2$\frac{7}{9}$,則f(a),f(b),f(c)的大小順序為( 。
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.4+2$\sqrt{2}$B.4+3$\sqrt{2}$C.8D.2+$\sqrt{2}$+$\sqrt{5}$+$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知正方形ABCD的邊長為1,點E是AB邊上的動點,則$\overrightarrow{DE}$•$\overrightarrow{DC}$的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某班甲、乙兩名學生的高考備考成績的莖葉圖如圖所示,分別求兩名學生成績的中位數(shù)和平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.函數(shù)f(x)滿足:f(3x+y)=3f(x)+f(y)對任意的x,y∈R均成立,且當x>0時,f(x)<0.
(1)求證:f(4x)=4f(x),f(3x)=3f(x);
(2)判斷函數(shù)f(x)在(-∞,+∞)上的單調性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設集合A={x|-2≤x≤2},集合B={x|x2-2x-3>0},則A∪B=( 。
A.(-∞,-1)∪(3,+∞)B.(-1,2]C.(-∞,2]∪(3,+∞)D.[-2,-1)

查看答案和解析>>

同步練習冊答案