4.已知M(-2,7)、N(10,-2),$\overrightarrow{NP}$=2$\overrightarrow{PM}$,則P點(diǎn)的坐標(biāo)為( 。
A.(-14,16)B.(22,-11)C.(6,1)D.(2,4)

分析 先設(shè)出P點(diǎn)的坐標(biāo),寫出2個(gè)向量的坐標(biāo),利用2個(gè)向量相等,則它們的坐標(biāo)對(duì)應(yīng)相等.

解答 解:設(shè)P(x,y),則$\overrightarrow{NP}$=(x-10,y+2),$\overrightarrow{PM}$=(-2-x,7-y),
∵$\overrightarrow{NP}$=2$\overrightarrow{PM}$,
∴$\left\{\begin{array}{l}{x-10=2(-2-x)}\\{y+2=2(7-y)}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,∴P點(diǎn)的坐標(biāo)為 (2,4).
故選:D.

點(diǎn)評(píng) 本題考查兩個(gè)向量相等的條件,兩個(gè)向量相等時(shí),它們的坐標(biāo)相等,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則“f1(x0,y0)=f2(x0,y0)”是“點(diǎn)M(x0,y0)是曲線C1與C2的交點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“乖點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“乖點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心;且“乖點(diǎn)”就是對(duì)稱中心.”請(qǐng)你根據(jù)這一發(fā)現(xiàn),請(qǐng)回答問(wèn)題:若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,則g($\frac{1}{2011}$)+g($\frac{2}{2011}$)+g($\frac{3}{2011}$)+g($\frac{4}{2011}$)+…+g($\frac{2010}{2011}$)=2010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x(x-2),x<a}\\{(x-4)^{2}(x-3),x≥a}\end{array}\right.$,若f(x)在定義域內(nèi)有且僅有一個(gè)極小值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[2,3]B.[1,4]C.(-∞,2]∪[3,+∞)D.(-∞,1]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知角α終邊經(jīng)過(guò)點(diǎn)P(-1,-$\sqrt{2}$),則cosα=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知復(fù)數(shù)z滿足z(1-i)=-i,則|z|=( 。
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)全集為R,已知A={x|x(x+2)≤x(3-x)+1},則∁RA=(-∞,-$\frac{1}{2}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在數(shù)列{an}中,a1=-1,an+1=SnSn+1
(1)求證:數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=|(3n-10)(n2-n)an|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,半徑為R的半圓內(nèi)的陰影部分以直徑AB所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積(其中∠BAC=30°)及其體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案