14.已知曲線C1,C2的方程分別為f1(x,y)=0,f2(x,y)=0,則“f1(x0,y0)=f2(x0,y0)”是“點(diǎn)M(x0,y0)是曲線C1與C2的交點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 設(shè)C1方程為x+y+1=0,C2方程為2x+2y-1=0,當(dāng)x=1,y=1時(shí),滿足“f1(x0,y0)=f2(x0,y0)”,反之時(shí)成立的,即可判斷出關(guān)系.

解答 解:設(shè)C1方程為x+y+1=0,C2方程為2x+2y-1=0,當(dāng)x=1,y=1時(shí),滿足1+1+1=2+2-1,
但是點(diǎn)(1,1)并不是其交點(diǎn),所以由“f1(x0,y0)=f2(x0,y0)”
推不出“點(diǎn)M(x0,y0)是曲線C1與C2的交點(diǎn)”,反之成立的,
所以“f1(x0,y0)=f2(x0,y0)”是“點(diǎn)M(x0,y0)是曲線C1與C2的交點(diǎn)”的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了曲線的交點(diǎn)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓C的短軸長(zhǎng)為6,離心率為$\frac{4}{5}$,則橢圓C長(zhǎng)軸長(zhǎng)為( 。
A.5B.10C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-1,2),若m$\overrightarrow a$+n$\overrightarrow b$與$\overrightarrow a$-3$\overrightarrow b$共線,則$\frac{m}{n}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某工廠2016年計(jì)劃生產(chǎn)A、B兩種不同產(chǎn)品,產(chǎn)品總數(shù)不超過300件,生產(chǎn)產(chǎn)品的總費(fèi)用不超過9萬元.A、B兩個(gè)產(chǎn)品的生產(chǎn)成本分別為每件500元和每件200元,假定該工廠生產(chǎn)的A、B兩種產(chǎn)品都能銷售出去,A、B兩種產(chǎn)品每件能給公司帶來的收益分別為0.3萬元和0.2萬元.問該工廠如何分配A、B兩種產(chǎn)品的生產(chǎn)數(shù)量,才能使工廠的收益最大?最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$(a>0,a≠1)是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)當(dāng)x∈(n,a-2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值;
(3)設(shè)函數(shù)g(x)=-ax2+8(x-1)af(x)-5,a≥8時(shí),存在最大實(shí)數(shù)t,使得x∈(1,t]時(shí)-5≤g(x)≤5恒成立,請(qǐng)寫出t與a的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在矩形ABCD中,AB=$\sqrt{5}$,BC=$\sqrt{3}$,P為矩形內(nèi)一點(diǎn),且AP=$\frac{\sqrt{5}}{2}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),則$\sqrt{5}$λ+$\sqrt{3}$μ的最大值為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:?x∈R,cosx=2;命題q:?x∈R,x2-x+1>0,則下列結(jié)論中正確的是(  )
A.p∨q是假命題B.p∧q是真命題C.(¬p)∧(¬q)是真命題D.(¬p)∨(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示,點(diǎn)P在∠AOB的對(duì)角區(qū)域MON的陰影內(nèi),滿足$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則實(shí)數(shù)對(duì)(x,y)可以是( 。
A.($\frac{1}{2}$,-$\frac{1}{3}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.(-$\frac{2}{3}$,-$\frac{1}{3}$)D.(-$\frac{3}{4}$,$\frac{2}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知M(-2,7)、N(10,-2),$\overrightarrow{NP}$=2$\overrightarrow{PM}$,則P點(diǎn)的坐標(biāo)為(  )
A.(-14,16)B.(22,-11)C.(6,1)D.(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案