4.設(shè)a=$\sqrt{2}\begin{array}{l}$,b=$\root{3}{3}}\end{array}\begin{array}{l}$,c=$\root{5}{5}}\end{array}$,則a,b,c從小到大的順序是c<a<b.

分析 利用根式的性質(zhì)化為同次根式、利用單調(diào)性即可得出大小關(guān)系.

解答 解:∵a=$\sqrt{2}$=$\root{6}{{2}^{3}}$=$\root{6}{8}$,b=$\root{3}{3}}\end{array}\begin{array}{l}$=$\root{6}{9}$,∴a<b.
∵a=$\sqrt{2}$=$\root{10}{{2}^{5}}$=$\root{10}{32}$,c=$\root{5}{5}}\end{array}$=$\root{10}{25}$,∴c<a.
∴c<a<b.
故答案為:c<a<b.

點(diǎn)評(píng) 本題考查了根式的運(yùn)算性質(zhì)及其冪函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓O1:x2+y2+6x=0與圓O2:x2+y2-8y=0的位置關(guān)系是相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知tanα=3,則$\frac{cos(π-α)}{{cos(α-\frac{π}{2})}}$的值為( 。
A.-$\frac{1}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知圓O的圓心為(2,-1),且圓與直線3x+4y-7=0相切.求:
(1)求圓O的標(biāo)準(zhǔn)方程;
(2)圓心O關(guān)于直線2x-y+1=0的對(duì)稱點(diǎn)O′為圓心,半徑不變的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-2x-3,求當(dāng)x≤0時(shí),不等式f(x)≥0整數(shù)解的個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題:“若|k|≤1,則關(guān)于x的不等式(k2-4)x2+(k+2)x-1≥0的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象的最小正周期,單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.把橢圓的普通方程9x2+4y2=36化為參數(shù)方程是(  )
A.$\left\{\begin{array}{l}x=3cosθ\\ y=2sinθ\end{array}\right.(θ為參數(shù))$B.$\left\{\begin{array}{l}x=2cosθ\\ y=3sinθ\end{array}\right.(θ為參數(shù))$
C.$\left\{\begin{array}{l}x=9cosθ\\ y=4sinθ\end{array}\right.(θ為參數(shù))$D.$\left\{\begin{array}{l}x=4cosθ\\ y=9sinθ\end{array}\right.(θ為參數(shù))$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)的圖象如圖所示,f'(x)是f(x)的導(dǎo)函數(shù),將下列三個(gè)數(shù)值f(2)-f(1),f'(1),f'(2)由小到大排列順序?yàn)閒′(2)<f(2)-f(1)<f′(1).

查看答案和解析>>

同步練習(xí)冊(cè)答案