【題目】已知橢圓: 的離心率,左、右焦點分別為, ,點滿足: 在線段的中垂線上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若斜率為()的直線與軸、橢圓順次相交于點、、,且,求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)由在線段的中垂線上得 ,代入點坐標(biāo)得,解得,再根據(jù),得, ,(2)由,得,設(shè),代入化簡得, ,即,再利用直線方程與拋物線方程聯(lián)立方程組,結(jié)合韋達定理及判別式恒大于零得, ,且.
試題解析:(Ⅰ)橢圓的離心率,
得,其中,橢圓的左、右焦點分別為, ,
又點在線段的中垂線上,∴ ,∴,
解得, , ,
∴橢圓的方程為.
(Ⅱ)由題意,直線的方程為,且,聯(lián)立,
得,
由,得,且.
設(shè),則有, ()
∵,且由題意,
, 又
, , ,
整理得,
將()代入得, , 知此式恒成立,
故直線斜率的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( 為實數(shù)),
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的極值;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知圓的圓心在直線上,且該圓存在兩點關(guān)于直線對稱,又圓與直線相切,過點的動直線與圓相交于兩點,是的中點,直線與相交于點.
(1)求圓的方程;
(2)當(dāng)時,求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: ,直線: .
(Ⅰ)求直線被圓所截得的弦長最短時的值及最短弦長;
(Ⅱ)已知坐標(biāo)軸上點和點滿足:存在圓上的兩點和,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率,過點,的直線與原點的距離為,是橢圓上任一點,從原點向圓:作兩條切線,分別交橢圓于點,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若記直線,的斜率分別為,,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至處,此時測得其東北方向與它相距32海里的處有一外國船只,且島位于海監(jiān)船正東海里處.
(1)求此時該外國船只與島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時8海里的速度沿正南方向航行,為了將該船攔截在離島24海里處,不讓其進入島24海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
為定義在上的“局部奇函數(shù)”;
曲線與軸交于不同的兩點;
若為假命題, 為真命題,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com