9.某班有9位班委,要在班委中選正、副班長各一人,問共有多少種不同選法?

分析 先選正班長,有9種方法,再選副班長,有8種方法,根據(jù)分步計數(shù)原理,求得不同的選法總數(shù).

解答 解:先選正班長,有9種方法,再選副班長,有8種方法,根據(jù)分步計數(shù)原理,不同的選法共有9×8=72種

點評 本題主要考查了簡單的排列組合問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2.
(Ⅰ)若M是棱PB上一點,且BM=2PM,求證:PD∥平面MAC;          
(Ⅱ) 若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅰ)的條件下,求三棱錐M-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在正方形ABCD的邊長為1,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,$\overrightarrow{DF}$=$\frac{1}{2}$($\overrightarrow{DC}$+$\overrightarrow{DB}$),則$\overrightarrow{BE}$•$\overrightarrow{DF}$的值為(  )
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則|$\overrightarrow{a}$+$\overrightarrow$|等于(  )
A.7B.$\sqrt{3}$C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,以右頂點為圓心,以c為半徑的圓與雙曲線右支的交點橫坐標為$\frac{3}{2}$a,則該雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{6}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.五個同學、一個老師站一排照相,老師不排在兩端的排法有(  )
A.480種B.240種C.120種D.720種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.從1,2,3,5,8中選出3個數(shù),組成一個三位數(shù),則這樣的三位數(shù)一共有60個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.等差數(shù)列{an}中,a3=1,a5=-1,則a9=( 。
A.3B.-3C.5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法正確的是( 。
A.命題“若|x|=1,則x=1”的否命題為:“若|x|=1,則x≠1”
B.“x=3”是“”“x2=9”的必要不充分條件
C.命題“存在x∈R,使得x2+x+1≤0”的否定是:對任意x∈R,均有x2+x+1>0”
D.命題“若x=y,則sinx=siny”的逆命題為真命題

查看答案和解析>>

同步練習冊答案