10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+y≤1}\end{array}\right.$,則z=x-y的最大值為$\frac{1}{2}$.

分析 線性約束條件畫出可行域,然后求出目標函數(shù)的最大值.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:,
由z=x-y得:y=x-z,平移y=x,
顯然直線y=x過A($\frac{1}{2}$,0)時,z最大,
z的最大值是z=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$

點評 近年來高考線性規(guī)劃問題高考數(shù)學考試的熱點,數(shù)形結(jié)合是數(shù)學思想的重要手段之一,是連接代數(shù)和幾何的重要方法.必須好好掌握.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設等差數(shù)列{an}滿足:a3=-9,a12=9,設{an}的前n項和為Sn,則使得Sn最小的序號n的值為( 。
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,A=$\frac{π}{6}$.
(1)若C=$\frac{7π}{12}$,求$\frac{a}$;
(2)若B=$\frac{2π}{3}$,b=2$\sqrt{3}$,求BC邊上的中線長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.實數(shù)m為何值時,方程x2+(m-3)x+m=0的兩個根都是正數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知等差數(shù)列{an}的前n項和Sn=-n2+10n,則數(shù)列{|an|}的前n項和Tn=$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在一段時間內(nèi),某種商品的價格x(元)和需求量y(件)之間的一組數(shù)據(jù)為:
價格x1416182022
需求量y1210753
求出y對x的回歸直線方程,并說明擬合效果的好壞.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知可導函數(shù)f(x)(x∈R)的導函數(shù)f′(x)滿足f(x)<f′(x),則不等式f(x)≥f(2016)ex-2016的解集是[2016,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.某商場在國慶黃金周的促銷活動中,對10月1日9時至14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示.已知9時至10時的銷售額為3萬元,則11時至12時的銷售額為12萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列命題中,真命題是( 。
A.“x>2”是”x2-x-2>0”必要條件B.“$\overrightarrow{a}$•$\overrightarrow$=0”是“$\overrightarrow{a}$⊥$\overrightarrow$”充要條件
C.?x∈R,x2+$\frac{1}{{{x^2}+1}}$≥1D.?x∈R,cosx+sinx>2

查看答案和解析>>

同步練習冊答案