【題目】已知.
(1)若x,,求,的值;
(2)若x,,試判斷的奇偶性;
(3)若函數(shù)在其定義域上是增函數(shù),,,求實(shí)數(shù)的取值范圍.
【答案】(1)f(1)=0,f(1)=0(2)見(jiàn)解析(3){x|2<x≤4}
【解析】
(1)利用已知條件,通過(guò)賦值法即可f(1),f(﹣1)的值;
(2)通過(guò)(1)f(﹣1)=0,利用函數(shù)的奇偶性定義,判斷y=f(x)的奇偶性;
(3)利用函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),結(jié)合f(2)=1,f(x)+f(x﹣2)≤3,得到不等式組,即可求x的取值范圍.
解;(1)令x=y=1,則f(1)=f(1)+f(1),所以f(1)=0;
又令x=y=﹣1,則f(1)=f(﹣1)+f(﹣1),所以f(﹣1)=0;
(2)令y=﹣1,則f(﹣x)=f(x)+f(﹣1),由(1)知f(﹣1)=0
所以f(﹣x)=f(x),即函數(shù)f(x)為偶函數(shù),
(3)因?yàn)?/span>f(4)=f(2)+f(2)=1+1=2
所以f(8)=f(2)+f(4)=1+2=3
因?yàn)?/span>f(x)+f(x﹣2)≤3
所以f[x(x﹣2)]≤f(8)
因?yàn)?/span>f(x)在(0,+∞)上是增函數(shù)
所以,即
所以{x|2<x≤4},所以不等式的解集為{x|2<x≤4}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中, 與相交于點(diǎn),點(diǎn)在線(xiàn)段上,,且平面.
(1)求實(shí)數(shù)的值;
(2)若,, 求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車(chē)騎游的人越來(lái)越多.某自行車(chē)租車(chē)點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車(chē)每次租車(chē)時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立來(lái)該租車(chē)點(diǎn)租車(chē)騎游(各租一車(chē)一次),設(shè)甲、乙不超過(guò)兩小時(shí)還車(chē)的概率分別為;兩小時(shí)以上且不超過(guò)三小時(shí)還車(chē)的概率分別為;兩人租車(chē)時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求出甲、乙兩人所付租車(chē)費(fèi)用相同的概率;
(2)求甲、乙兩人所付的租車(chē)費(fèi)用之和為4元時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16;
B組:12,13,15,16,17,14,.
假設(shè)所有病人的康復(fù)時(shí)間相互獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.
(1)求甲的康復(fù)時(shí)間不少于14天的概率;
(2)如果,求甲的康復(fù)時(shí)間比乙的康復(fù)時(shí)間長(zhǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓以,為左右焦點(diǎn),且與直線(xiàn):相切于點(diǎn).
(1)求橢圓的方程及點(diǎn)的坐標(biāo);
(2)若直線(xiàn):與橢圓交于兩點(diǎn),且交于點(diǎn)(異于點(diǎn)),求證:線(xiàn)段長(zhǎng),,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).
(1)求的值;
(2)不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)的參數(shù)方程為(為參數(shù), ),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)討論直線(xiàn)與圓的公共點(diǎn)個(gè)數(shù);
(Ⅱ)過(guò)極點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為,求點(diǎn)的軌跡與圓相交所得弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島及其附屬島嶼是中國(guó)固有領(lǐng)土,如圖:點(diǎn)分別表示釣魚(yú)島、南小島、黃尾嶼,點(diǎn)在點(diǎn)的北偏東方向,點(diǎn)在點(diǎn)的南偏西方向,點(diǎn)在點(diǎn)的南偏東方向,且兩點(diǎn)的距離約為3海里.
(1)求兩點(diǎn)間的距離;(精確到0.01)
(2)某一時(shí)刻,我國(guó)一漁船在點(diǎn)處因故障拋錨發(fā)出求教信號(hào).一艘國(guó)艦艇正從點(diǎn)正東10海里的點(diǎn)處以18海里/小時(shí)的速度接近漁船,其航線(xiàn)為 (直線(xiàn)行進(jìn)),而我東海某漁政船正位于點(diǎn)南偏西方向20海里的點(diǎn)處,收到信號(hào)后趕往救助,其航線(xiàn)為先向正北航行8海里至點(diǎn)處,再折向點(diǎn)直線(xiàn)航行,航速為22海里/小時(shí).漁政船能否先于國(guó)艦艇趕到進(jìn)行救助?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在考察黃煙經(jīng)過(guò)藥物處理和發(fā)生青花病的關(guān)系時(shí),得到如下數(shù)據(jù):在試驗(yàn)的470株黃煙中,經(jīng)過(guò)藥物處理的黃煙有25株發(fā)生青花病,60株沒(méi)有發(fā)生青花;未經(jīng)過(guò)藥物處理的有185株發(fā)生青花病,200株沒(méi)有發(fā)生青花病.試推斷藥物處理跟發(fā)生青花病是否有關(guān)系.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com